Siqi Zhang, Qizhe Zhang, Shanghang Zhang, Xiaohong Liu, Jingkun Yue, Ming Lu, Huihuan Xu, Jiaxin Yao, Xiaobao Wei, Jiajun Cao, Xiang Zhang, Ming Gao, Jun Shen, Yichang Hao, Yinkui Wang, Xingcai Zhang, Song Wu, Ping Zhang, Shuguang Cui, Guangyu Wang
{"title":"开放世界医学图像分割的通用基础模型和数据库","authors":"Siqi Zhang, Qizhe Zhang, Shanghang Zhang, Xiaohong Liu, Jingkun Yue, Ming Lu, Huihuan Xu, Jiaxin Yao, Xiaobao Wei, Jiajun Cao, Xiang Zhang, Ming Gao, Jun Shen, Yichang Hao, Yinkui Wang, Xingcai Zhang, Song Wu, Ping Zhang, Shuguang Cui, Guangyu Wang","doi":"10.1038/s41551-025-01497-3","DOIUrl":null,"url":null,"abstract":"<p>Vision foundation models have demonstrated vast potential in achieving generalist medical segmentation capability, providing a versatile, task-agnostic solution through a single model. However, current generalist models involve simple pre-training on various medical data containing irrelevant information, often resulting in the negative transfer phenomenon and degenerated performance. Furthermore, the practical applicability of foundation models across diverse open-world scenarios, especially in out-of-distribution (OOD) settings, has not been extensively evaluated. Here we construct a publicly accessible database, MedSegDB, based on a tree-structured hierarchy and annotated from 129 public medical segmentation repositories and 5 in-house datasets. We further propose a Generalist Medical Segmentation model (MedSegX), a vision foundation model trained with a model-agnostic Contextual Mixture of Adapter Experts (ConMoAE) for open-world segmentation. We conduct a comprehensive evaluation of MedSegX across a range of medical segmentation tasks. Experimental results indicate that MedSegX achieves state-of-the-art performance across various modalities and organ systems in in-distribution (ID) settings. In OOD and real-world clinical settings, MedSegX consistently maintains its performance in both zero-shot and data-efficient generalization, outperforming other foundation models.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"49 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A generalist foundation model and database for open-world medical image segmentation\",\"authors\":\"Siqi Zhang, Qizhe Zhang, Shanghang Zhang, Xiaohong Liu, Jingkun Yue, Ming Lu, Huihuan Xu, Jiaxin Yao, Xiaobao Wei, Jiajun Cao, Xiang Zhang, Ming Gao, Jun Shen, Yichang Hao, Yinkui Wang, Xingcai Zhang, Song Wu, Ping Zhang, Shuguang Cui, Guangyu Wang\",\"doi\":\"10.1038/s41551-025-01497-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vision foundation models have demonstrated vast potential in achieving generalist medical segmentation capability, providing a versatile, task-agnostic solution through a single model. However, current generalist models involve simple pre-training on various medical data containing irrelevant information, often resulting in the negative transfer phenomenon and degenerated performance. Furthermore, the practical applicability of foundation models across diverse open-world scenarios, especially in out-of-distribution (OOD) settings, has not been extensively evaluated. Here we construct a publicly accessible database, MedSegDB, based on a tree-structured hierarchy and annotated from 129 public medical segmentation repositories and 5 in-house datasets. We further propose a Generalist Medical Segmentation model (MedSegX), a vision foundation model trained with a model-agnostic Contextual Mixture of Adapter Experts (ConMoAE) for open-world segmentation. We conduct a comprehensive evaluation of MedSegX across a range of medical segmentation tasks. Experimental results indicate that MedSegX achieves state-of-the-art performance across various modalities and organ systems in in-distribution (ID) settings. In OOD and real-world clinical settings, MedSegX consistently maintains its performance in both zero-shot and data-efficient generalization, outperforming other foundation models.</p>\",\"PeriodicalId\":19063,\"journal\":{\"name\":\"Nature Biomedical Engineering\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":26.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41551-025-01497-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-025-01497-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A generalist foundation model and database for open-world medical image segmentation
Vision foundation models have demonstrated vast potential in achieving generalist medical segmentation capability, providing a versatile, task-agnostic solution through a single model. However, current generalist models involve simple pre-training on various medical data containing irrelevant information, often resulting in the negative transfer phenomenon and degenerated performance. Furthermore, the practical applicability of foundation models across diverse open-world scenarios, especially in out-of-distribution (OOD) settings, has not been extensively evaluated. Here we construct a publicly accessible database, MedSegDB, based on a tree-structured hierarchy and annotated from 129 public medical segmentation repositories and 5 in-house datasets. We further propose a Generalist Medical Segmentation model (MedSegX), a vision foundation model trained with a model-agnostic Contextual Mixture of Adapter Experts (ConMoAE) for open-world segmentation. We conduct a comprehensive evaluation of MedSegX across a range of medical segmentation tasks. Experimental results indicate that MedSegX achieves state-of-the-art performance across various modalities and organ systems in in-distribution (ID) settings. In OOD and real-world clinical settings, MedSegX consistently maintains its performance in both zero-shot and data-efficient generalization, outperforming other foundation models.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.