稳定的4.2 V固态钠电池的各向同性脱膜设计

IF 60.1 1区 材料科学 Q1 ENERGY & FUELS
Yuan Liu, Huican Mao, Rui Bai, Suting Weng, Qiangqiang Zhang, Xiaohui Rong, Xiao Chen, Chu Zhang, Shuai Han, Feixiang Ding, Xuefeng Wang, Yaxiang Lu, Junmei Zhao, Fei Wei, Liquan Chen, Yong-Sheng Hu
{"title":"稳定的4.2 V固态钠电池的各向同性脱膜设计","authors":"Yuan Liu, Huican Mao, Rui Bai, Suting Weng, Qiangqiang Zhang, Xiaohui Rong, Xiao Chen, Chu Zhang, Shuai Han, Feixiang Ding, Xuefeng Wang, Yaxiang Lu, Junmei Zhao, Fei Wei, Liquan Chen, Yong-Sheng Hu","doi":"10.1038/s41560-025-01857-y","DOIUrl":null,"url":null,"abstract":"<p>Side reactions between high-voltage cathodes and electrolytes remain a critical obstacle to the advancement of solid-state batteries—particularly for Na-ion systems—due to the higher Na<sup>+</sup>/Na redox potential. Despite recent extensive efforts, achieving a long cycle life is still challenging at the 4.2 V cut-off (versus Na<sup>+</sup>/Na). Here we design a room-temperature isotropic epitaxial growth to achieve a relatively uniform and dense metal–organic framework epilayer on Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F surfaces. Despite using polyethylene oxide, a typical ether-based solid polymer electrolyte, the cathode with isotropic epilayer exhibits enhanced cycling performance at the 4.2 V cut-off (retaining up to 77.9% of its initial capacity after 1,500 cycles). Combining experimental measurements and theoretical analyses, the key factor governing isotropic epitaxial growth behaviour is explicitly elucidated. Furthermore, we develop a self-designed high-sensitivity characterization method, in situ linear sweep voltammetry coupled with gas chromatography–mass spectrometry, to elucidate the failure mechanism of polyethylene oxide on Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F surfaces and and to reveal the excellent electrochemical stability of the isotropic epilayer. Interestingly, the universality of this approach has also been validated, highlighting its strong potential as an effective strategy for enabling high-energy-density batteries.</p>","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"62 1","pages":""},"PeriodicalIF":60.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an isotropic epilayer for stable 4.2 V solid-state Na batteries\",\"authors\":\"Yuan Liu, Huican Mao, Rui Bai, Suting Weng, Qiangqiang Zhang, Xiaohui Rong, Xiao Chen, Chu Zhang, Shuai Han, Feixiang Ding, Xuefeng Wang, Yaxiang Lu, Junmei Zhao, Fei Wei, Liquan Chen, Yong-Sheng Hu\",\"doi\":\"10.1038/s41560-025-01857-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Side reactions between high-voltage cathodes and electrolytes remain a critical obstacle to the advancement of solid-state batteries—particularly for Na-ion systems—due to the higher Na<sup>+</sup>/Na redox potential. Despite recent extensive efforts, achieving a long cycle life is still challenging at the 4.2 V cut-off (versus Na<sup>+</sup>/Na). Here we design a room-temperature isotropic epitaxial growth to achieve a relatively uniform and dense metal–organic framework epilayer on Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F surfaces. Despite using polyethylene oxide, a typical ether-based solid polymer electrolyte, the cathode with isotropic epilayer exhibits enhanced cycling performance at the 4.2 V cut-off (retaining up to 77.9% of its initial capacity after 1,500 cycles). Combining experimental measurements and theoretical analyses, the key factor governing isotropic epitaxial growth behaviour is explicitly elucidated. Furthermore, we develop a self-designed high-sensitivity characterization method, in situ linear sweep voltammetry coupled with gas chromatography–mass spectrometry, to elucidate the failure mechanism of polyethylene oxide on Na<sub>3</sub>V<sub>2</sub>O<sub>2</sub>(PO<sub>4</sub>)<sub>2</sub>F surfaces and and to reveal the excellent electrochemical stability of the isotropic epilayer. Interestingly, the universality of this approach has also been validated, highlighting its strong potential as an effective strategy for enabling high-energy-density batteries.</p>\",\"PeriodicalId\":19073,\"journal\":{\"name\":\"Nature Energy\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":60.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41560-025-01857-y\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41560-025-01857-y","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

高压阴极和电解质之间的副反应仍然是固态电池发展的一个关键障碍,特别是对于钠离子系统,由于更高的Na+/Na氧化还原电位。尽管最近进行了广泛的努力,但在4.2 V截止电压(相对于Na+/Na)下实现长循环寿命仍然具有挑战性。本文设计了一种室温各向同性外延生长方法,在Na3V2O2(PO4)2F表面上实现了相对均匀和致密的金属-有机骨架脱膜。尽管使用了聚乙烯氧化物(一种典型的醚基固体聚合物电解质),具有各向同性涂层的阴极在4.2 V截止电压下表现出更强的循环性能(在1500次循环后仍能保持其初始容量的77.9%)。结合实验测量和理论分析,明确地阐明了控制各向同性外延生长行为的关键因素。此外,我们开发了一种自行设计的高灵敏度表征方法,即原位线性扫描伏安法和气相色谱-质谱联用方法,以阐明聚乙烯氧化物在Na3V2O2(PO4)2F表面上的失效机理,并揭示各向异性涂层优异的电化学稳定性。有趣的是,这种方法的普遍性也得到了验证,突出了它作为实现高能量密度电池的有效策略的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Designing an isotropic epilayer for stable 4.2 V solid-state Na batteries

Designing an isotropic epilayer for stable 4.2 V solid-state Na batteries

Side reactions between high-voltage cathodes and electrolytes remain a critical obstacle to the advancement of solid-state batteries—particularly for Na-ion systems—due to the higher Na+/Na redox potential. Despite recent extensive efforts, achieving a long cycle life is still challenging at the 4.2 V cut-off (versus Na+/Na). Here we design a room-temperature isotropic epitaxial growth to achieve a relatively uniform and dense metal–organic framework epilayer on Na3V2O2(PO4)2F surfaces. Despite using polyethylene oxide, a typical ether-based solid polymer electrolyte, the cathode with isotropic epilayer exhibits enhanced cycling performance at the 4.2 V cut-off (retaining up to 77.9% of its initial capacity after 1,500 cycles). Combining experimental measurements and theoretical analyses, the key factor governing isotropic epitaxial growth behaviour is explicitly elucidated. Furthermore, we develop a self-designed high-sensitivity characterization method, in situ linear sweep voltammetry coupled with gas chromatography–mass spectrometry, to elucidate the failure mechanism of polyethylene oxide on Na3V2O2(PO4)2F surfaces and and to reveal the excellent electrochemical stability of the isotropic epilayer. Interestingly, the universality of this approach has also been validated, highlighting its strong potential as an effective strategy for enabling high-energy-density batteries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信