{"title":"用于敏感生物传感的水不敏感下移纳米颗粒","authors":"Jiang Ming, Sikun Hu, Fan Zhang","doi":"10.1038/s41377-025-01976-x","DOIUrl":null,"url":null,"abstract":"<p>Conventional optical probes suffer from signal degradation in aqueous media, hindering sensitive biodetection. To overcome this, newly developed water-insensitive down-shifting nanoparticles (WINPs) possess superior photophysical properties in the NIR-I window, including high quantum yield and negligible thermal effects, permitting stable, high-contrast signal generation under low excitation power. This advantage facilitated a low-power lateral flow assay capable of highly sensitive avian influenza virus (AIV) detection in the opaque biological matrices (such as avian swabs), mitigating interference issues relying on visible-range signals.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"43 1","pages":""},"PeriodicalIF":23.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water-insensitive down-shifting nanoparticles for sensitive biosensing\",\"authors\":\"Jiang Ming, Sikun Hu, Fan Zhang\",\"doi\":\"10.1038/s41377-025-01976-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional optical probes suffer from signal degradation in aqueous media, hindering sensitive biodetection. To overcome this, newly developed water-insensitive down-shifting nanoparticles (WINPs) possess superior photophysical properties in the NIR-I window, including high quantum yield and negligible thermal effects, permitting stable, high-contrast signal generation under low excitation power. This advantage facilitated a low-power lateral flow assay capable of highly sensitive avian influenza virus (AIV) detection in the opaque biological matrices (such as avian swabs), mitigating interference issues relying on visible-range signals.</p>\",\"PeriodicalId\":18069,\"journal\":{\"name\":\"Light-Science & Applications\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":23.4000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light-Science & Applications\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-025-01976-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-025-01976-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Water-insensitive down-shifting nanoparticles for sensitive biosensing
Conventional optical probes suffer from signal degradation in aqueous media, hindering sensitive biodetection. To overcome this, newly developed water-insensitive down-shifting nanoparticles (WINPs) possess superior photophysical properties in the NIR-I window, including high quantum yield and negligible thermal effects, permitting stable, high-contrast signal generation under low excitation power. This advantage facilitated a low-power lateral flow assay capable of highly sensitive avian influenza virus (AIV) detection in the opaque biological matrices (such as avian swabs), mitigating interference issues relying on visible-range signals.