基于卷积神经网络和CBCT的牙龈厚度三维可视化与定量分析。

IF 1.8 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Frontiers in dental medicine Pub Date : 2025-08-18 eCollection Date: 2025-01-01 DOI:10.3389/fdmed.2025.1635155
Lan Yang, ZiCheng Zhu, Yongshan Li, Jieying Huang, Xiaoli Wang, Haoran Zheng, Jiang Chen
{"title":"基于卷积神经网络和CBCT的牙龈厚度三维可视化与定量分析。","authors":"Lan Yang, ZiCheng Zhu, Yongshan Li, Jieying Huang, Xiaoli Wang, Haoran Zheng, Jiang Chen","doi":"10.3389/fdmed.2025.1635155","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Traditional gingival thickness (GT) assessment methods provide only point measurements or simple classifications, lacking spatial distribution information. This study aimed to develop a CBCT-based 3D visualization system for gingival thickness using deep learning, providing a novel spatial assessment tool for implant surgery planning.</p><p><strong>Methods: </strong>CBCT and intraoral scanning (IOS) data from 50 patients with tooth loss were collected to establish a standardized dataset. DeepLabV3+ architecture was employed for semantic segmentation of gingival and bone tissues. A 3D visualization algorithm incorporating vertical scanning strategy, triangular mesh construction, and gradient color mapping was innovatively developed to transform 2D slices into continuous 3D surfaces.</p><p><strong>Results: </strong>The semantic segmentation model achieved a mIoU of 85.92 ± 0.43%. The 3D visualization system successfully constructed a comprehensive spatial distribution model of gingival thickness, clearly demonstrating GT variations from alveolar ridge to labial aspect through gradient coloration. The 3D model enabled millimeter-precision quantification, supporting multi-angle and multi-level GT assessment that overcame the limitations of traditional 2D measurements.</p><p><strong>Conclusion: </strong>This system represents a methodological advancement from qualitative to spatial quantitative GT assessment. The intuitive 3D visualization serves as an innovative preoperative tool that identifies high-risk areas and guides personalized surgical planning, enhancing predictability for aesthetic and complex implant cases.</p>","PeriodicalId":73077,"journal":{"name":"Frontiers in dental medicine","volume":"6 ","pages":"1635155"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399636/pdf/","citationCount":"0","resultStr":"{\"title\":\"Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT.\",\"authors\":\"Lan Yang, ZiCheng Zhu, Yongshan Li, Jieying Huang, Xiaoli Wang, Haoran Zheng, Jiang Chen\",\"doi\":\"10.3389/fdmed.2025.1635155\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Traditional gingival thickness (GT) assessment methods provide only point measurements or simple classifications, lacking spatial distribution information. This study aimed to develop a CBCT-based 3D visualization system for gingival thickness using deep learning, providing a novel spatial assessment tool for implant surgery planning.</p><p><strong>Methods: </strong>CBCT and intraoral scanning (IOS) data from 50 patients with tooth loss were collected to establish a standardized dataset. DeepLabV3+ architecture was employed for semantic segmentation of gingival and bone tissues. A 3D visualization algorithm incorporating vertical scanning strategy, triangular mesh construction, and gradient color mapping was innovatively developed to transform 2D slices into continuous 3D surfaces.</p><p><strong>Results: </strong>The semantic segmentation model achieved a mIoU of 85.92 ± 0.43%. The 3D visualization system successfully constructed a comprehensive spatial distribution model of gingival thickness, clearly demonstrating GT variations from alveolar ridge to labial aspect through gradient coloration. The 3D model enabled millimeter-precision quantification, supporting multi-angle and multi-level GT assessment that overcame the limitations of traditional 2D measurements.</p><p><strong>Conclusion: </strong>This system represents a methodological advancement from qualitative to spatial quantitative GT assessment. The intuitive 3D visualization serves as an innovative preoperative tool that identifies high-risk areas and guides personalized surgical planning, enhancing predictability for aesthetic and complex implant cases.</p>\",\"PeriodicalId\":73077,\"journal\":{\"name\":\"Frontiers in dental medicine\",\"volume\":\"6 \",\"pages\":\"1635155\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399636/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in dental medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdmed.2025.1635155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in dental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdmed.2025.1635155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:传统的牙龈厚度评估方法仅提供点测量或简单分类,缺乏空间分布信息。本研究旨在利用深度学习技术开发基于cbct的牙龈厚度三维可视化系统,为种植手术规划提供一种新的空间评估工具。方法:收集50例牙齿脱落患者的CBCT和口腔内扫描(IOS)数据,建立标准化数据集。采用DeepLabV3+架构对牙龈和骨组织进行语义分割。创新地开发了一种结合垂直扫描策略、三角形网格构建和渐变颜色映射的三维可视化算法,将二维切片转换为连续的三维曲面。结果:语义分割模型的mIoU为85.92±0.43%。三维可视化系统成功构建了牙龈厚度的综合空间分布模型,通过渐变着色清晰地展示了从牙槽嵴到唇部的GT变化。3D模型能够实现毫米级精度的量化,支持多角度和多层次的GT评估,克服了传统2D测量的局限性。结论:该系统代表了从定性到空间定量的方法进步。直观的3D可视化作为一种创新的术前工具,可以识别高风险区域并指导个性化的手术计划,提高美学和复杂植入病例的可预测性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT.

Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT.

Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT.

Clinical-oriented 3D visualization and quantitative analysis of gingival thickness using convolutional neural networks and CBCT.

Objective: Traditional gingival thickness (GT) assessment methods provide only point measurements or simple classifications, lacking spatial distribution information. This study aimed to develop a CBCT-based 3D visualization system for gingival thickness using deep learning, providing a novel spatial assessment tool for implant surgery planning.

Methods: CBCT and intraoral scanning (IOS) data from 50 patients with tooth loss were collected to establish a standardized dataset. DeepLabV3+ architecture was employed for semantic segmentation of gingival and bone tissues. A 3D visualization algorithm incorporating vertical scanning strategy, triangular mesh construction, and gradient color mapping was innovatively developed to transform 2D slices into continuous 3D surfaces.

Results: The semantic segmentation model achieved a mIoU of 85.92 ± 0.43%. The 3D visualization system successfully constructed a comprehensive spatial distribution model of gingival thickness, clearly demonstrating GT variations from alveolar ridge to labial aspect through gradient coloration. The 3D model enabled millimeter-precision quantification, supporting multi-angle and multi-level GT assessment that overcame the limitations of traditional 2D measurements.

Conclusion: This system represents a methodological advancement from qualitative to spatial quantitative GT assessment. The intuitive 3D visualization serves as an innovative preoperative tool that identifies high-risk areas and guides personalized surgical planning, enhancing predictability for aesthetic and complex implant cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信