{"title":"ilr3 - nrt /NIA1/SWEET12模块调控苹果氮素吸收和利用。","authors":"Hong-Liang Li, Ran-Xin Liu, Xiang Wu, Xin-Long Guo, Shan-Shan Li, Tian-Tian Wang, Yan-Yan Guo, Xiao-Fei Wang, Chun-Xiang You","doi":"10.1186/s43897-025-00172-0","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen (N) is essential for the physiological metabolism, growth, and development of plants. Plants have evolved a complex regulatory network for the efficient regulation of N uptake and utilization to adapt to fluctuations in environmental N levels. However, the mechanisms underlying the regulation of N absorption and utilization in apple remain unclear. Here, we identified MdILR3 (IAA-LEUCINE RESISTANT3) as an upstream regulator of MdNRT2.4 through yeast one-hybrid (Y1H) screening. MdILR3 overexpression significantly up-regulated the expression of MdNRT2.3/2.4 and MdNIA1, resulting in an increase in nitrate content and nitrate reductase activity. Y1H and EMSA assays revealed that MdILR3 directly interacted with the promoters of MdNRT2.3/2.4 and MdNIA1. Furthermore, MdILR3 can directly bind to the promoter of MdSWEET12 and activate its expression, thereby regulating sucrose transport to provide energy for N uptake in roots. In summary, we provide physiological and molecular evidence suggesting that MdILR3 may positively regulate nitrate response by activating the expression of genes related to N uptake and sugar transport. Our findings suggest that genetic improvements in apple could enhance its ability to absorb and utilize N.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"57"},"PeriodicalIF":8.1000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406481/pdf/","citationCount":"0","resultStr":"{\"title\":\"The ILR3-NRTs/NIA1/SWEET12 module regulates nitrogen uptake and utilization in apple.\",\"authors\":\"Hong-Liang Li, Ran-Xin Liu, Xiang Wu, Xin-Long Guo, Shan-Shan Li, Tian-Tian Wang, Yan-Yan Guo, Xiao-Fei Wang, Chun-Xiang You\",\"doi\":\"10.1186/s43897-025-00172-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nitrogen (N) is essential for the physiological metabolism, growth, and development of plants. Plants have evolved a complex regulatory network for the efficient regulation of N uptake and utilization to adapt to fluctuations in environmental N levels. However, the mechanisms underlying the regulation of N absorption and utilization in apple remain unclear. Here, we identified MdILR3 (IAA-LEUCINE RESISTANT3) as an upstream regulator of MdNRT2.4 through yeast one-hybrid (Y1H) screening. MdILR3 overexpression significantly up-regulated the expression of MdNRT2.3/2.4 and MdNIA1, resulting in an increase in nitrate content and nitrate reductase activity. Y1H and EMSA assays revealed that MdILR3 directly interacted with the promoters of MdNRT2.3/2.4 and MdNIA1. Furthermore, MdILR3 can directly bind to the promoter of MdSWEET12 and activate its expression, thereby regulating sucrose transport to provide energy for N uptake in roots. In summary, we provide physiological and molecular evidence suggesting that MdILR3 may positively regulate nitrate response by activating the expression of genes related to N uptake and sugar transport. Our findings suggest that genetic improvements in apple could enhance its ability to absorb and utilize N.</p>\",\"PeriodicalId\":29970,\"journal\":{\"name\":\"Molecular Horticulture\",\"volume\":\"5 1\",\"pages\":\"57\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406481/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Horticulture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s43897-025-00172-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-025-00172-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
The ILR3-NRTs/NIA1/SWEET12 module regulates nitrogen uptake and utilization in apple.
Nitrogen (N) is essential for the physiological metabolism, growth, and development of plants. Plants have evolved a complex regulatory network for the efficient regulation of N uptake and utilization to adapt to fluctuations in environmental N levels. However, the mechanisms underlying the regulation of N absorption and utilization in apple remain unclear. Here, we identified MdILR3 (IAA-LEUCINE RESISTANT3) as an upstream regulator of MdNRT2.4 through yeast one-hybrid (Y1H) screening. MdILR3 overexpression significantly up-regulated the expression of MdNRT2.3/2.4 and MdNIA1, resulting in an increase in nitrate content and nitrate reductase activity. Y1H and EMSA assays revealed that MdILR3 directly interacted with the promoters of MdNRT2.3/2.4 and MdNIA1. Furthermore, MdILR3 can directly bind to the promoter of MdSWEET12 and activate its expression, thereby regulating sucrose transport to provide energy for N uptake in roots. In summary, we provide physiological and molecular evidence suggesting that MdILR3 may positively regulate nitrate response by activating the expression of genes related to N uptake and sugar transport. Our findings suggest that genetic improvements in apple could enhance its ability to absorb and utilize N.
期刊介绍:
Aims
Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field.
Scope
Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants):
▪ Developmental and evolutionary biology
▪ Physiology, biochemistry and cell biology
▪ Plant-microbe and plant-environment interactions
▪ Genetics and epigenetics
▪ Molecular breeding and biotechnology
▪ Secondary metabolism and synthetic biology
▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome.
The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest.
In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.