Jinlong Lin, Zach Marin, Xiaoding Wang, Hazel M Borges, Qionghua Shen, Pierre-Emmanuel Y N'Guetta, Xuemei Luo, Baylee A Porter, Yuanyuan Xue, Md Torikul Islam, Tai Ngo, Doreen Idonije, Seweryn Gałecki, Arin B Aurora, Hu Zhao, Suzanne D Conzen, Sean J Morrison, Shuang Liang, Zhenyu Zhong, Lori L O'Brien, Kevin M Dean
{"title":"亚细胞分辨率特征驱动的全组织成像。","authors":"Jinlong Lin, Zach Marin, Xiaoding Wang, Hazel M Borges, Qionghua Shen, Pierre-Emmanuel Y N'Guetta, Xuemei Luo, Baylee A Porter, Yuanyuan Xue, Md Torikul Islam, Tai Ngo, Doreen Idonije, Seweryn Gałecki, Arin B Aurora, Hu Zhao, Suzanne D Conzen, Sean J Morrison, Shuang Liang, Zhenyu Zhong, Lori L O'Brien, Kevin M Dean","doi":"10.1016/j.crmeth.2025.101148","DOIUrl":null,"url":null,"abstract":"<p><p>Existing microscopy approaches are often unable to identify and contextualize rare but biologically meaningful events due to limitations associated with simultaneously achieving both high-resolution imaging and a cm-scale field of view. Here, we present multiscale cleared tissue axially swept light-sheet microscopy (MCT-ASLM), a platform combining cm-scale imaging with targeted high-resolution interrogation of intact tissues in human-guided or autonomous modes. Capable of capturing fields of view up to 21 mm at micron-scale resolution, MCT-ASLM can seamlessly transition to a targeted imaging mode with an isotropic resolution that approaches ∼300 nm. This versatility enables detailed studies of hierarchical organization and spatially complex processes, including mapping neuronal circuits in rat brains, visualizing glomerular innervation in mouse kidneys, and examining metastatic tumor microenvironments. By bridging subcellular- to tissue-level scales, MCT-ASLM offers a powerful method for unraveling how local events contribute to global biological phenomena.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"101148"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature-driven whole-tissue imaging with subcellular resolution.\",\"authors\":\"Jinlong Lin, Zach Marin, Xiaoding Wang, Hazel M Borges, Qionghua Shen, Pierre-Emmanuel Y N'Guetta, Xuemei Luo, Baylee A Porter, Yuanyuan Xue, Md Torikul Islam, Tai Ngo, Doreen Idonije, Seweryn Gałecki, Arin B Aurora, Hu Zhao, Suzanne D Conzen, Sean J Morrison, Shuang Liang, Zhenyu Zhong, Lori L O'Brien, Kevin M Dean\",\"doi\":\"10.1016/j.crmeth.2025.101148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Existing microscopy approaches are often unable to identify and contextualize rare but biologically meaningful events due to limitations associated with simultaneously achieving both high-resolution imaging and a cm-scale field of view. Here, we present multiscale cleared tissue axially swept light-sheet microscopy (MCT-ASLM), a platform combining cm-scale imaging with targeted high-resolution interrogation of intact tissues in human-guided or autonomous modes. Capable of capturing fields of view up to 21 mm at micron-scale resolution, MCT-ASLM can seamlessly transition to a targeted imaging mode with an isotropic resolution that approaches ∼300 nm. This versatility enables detailed studies of hierarchical organization and spatially complex processes, including mapping neuronal circuits in rat brains, visualizing glomerular innervation in mouse kidneys, and examining metastatic tumor microenvironments. By bridging subcellular- to tissue-level scales, MCT-ASLM offers a powerful method for unraveling how local events contribute to global biological phenomena.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":\" \",\"pages\":\"101148\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2025.101148\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.101148","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Feature-driven whole-tissue imaging with subcellular resolution.
Existing microscopy approaches are often unable to identify and contextualize rare but biologically meaningful events due to limitations associated with simultaneously achieving both high-resolution imaging and a cm-scale field of view. Here, we present multiscale cleared tissue axially swept light-sheet microscopy (MCT-ASLM), a platform combining cm-scale imaging with targeted high-resolution interrogation of intact tissues in human-guided or autonomous modes. Capable of capturing fields of view up to 21 mm at micron-scale resolution, MCT-ASLM can seamlessly transition to a targeted imaging mode with an isotropic resolution that approaches ∼300 nm. This versatility enables detailed studies of hierarchical organization and spatially complex processes, including mapping neuronal circuits in rat brains, visualizing glomerular innervation in mouse kidneys, and examining metastatic tumor microenvironments. By bridging subcellular- to tissue-level scales, MCT-ASLM offers a powerful method for unraveling how local events contribute to global biological phenomena.