Mohammad Alwahsh, Rahaf Alejel, Lama Hamadneh, Shereen M Aleidi, Rosemarie Marchan, Aya Hasan, Suhair Jasim, Fadi G Saqallah, Sameer Al-Kouz, Buthaina Hussein, Ala A Alhusban, Yusuf Al-Hiari, Tariq Al-Qirim, Roland Hergenröder
{"title":"triton WR-1339诱导高脂血症的潜在生物标志物鉴定:基于核磁共振的血浆代谢组学方法和基因表达分析。","authors":"Mohammad Alwahsh, Rahaf Alejel, Lama Hamadneh, Shereen M Aleidi, Rosemarie Marchan, Aya Hasan, Suhair Jasim, Fadi G Saqallah, Sameer Al-Kouz, Buthaina Hussein, Ala A Alhusban, Yusuf Al-Hiari, Tariq Al-Qirim, Roland Hergenröder","doi":"10.1007/s11306-025-02318-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hyperlipidemia is a complex lipid metabolism disorder defined as an abnormal increase in circulating levels of one or more plasma lipids and lipoproteins. Triton WR-1339-induced hyperlipidemia model is one of the most commonly used acute models for hyperlipidemia induction in research. However, the metabolic alteration induced by Triton WR-1339 remains unclear.</p><p><strong>Aims: </strong>This study aimed to identify potential biomarkers associated with the Triton WR-1339-induced hyperlipidemia model. In addition, it aims to explore the underlying mechanisms of metabolic disturbances associated with hyperlipidemia.</p><p><strong>Methods: </strong>Male Wistar rats were administered Triton WR-1339 to induce hyperlipidemia. Plasma samples were collected for lipid assays and for metabolomics analysis using nuclear magnetic resonance spectroscopy. Gene expression in liver, cardiac, and kidney tissues of key associated transporters including SLC16A1, SLC25A10, SLC5A3, and SLC7A8 and SDHA enzyme subunit was assessed using RT-PCR. In-silico analysis complemented experimental data using NEBION Genevestigator and STITCH databases for molecular interactions.</p><p><strong>Results: </strong>Triton WR-1339 administration significantly elevated plasma triglycerides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) demonstrated distinct metabolic profiles between control and model groups. Metabolomics results identified potential biomarkers (p < 0.05), including myo-inositol, succinate, creatine, glycine, serine, isoleucine and creatine phosphate, which all showed higher levels in hyperlipidemia group compared to control group while xanthine showed lower levels in hyperlipidemia group. Potential biomarkers were associated with inflammatory, oxidative stress responses, and abnormal lipid metabolism. Gene expression analysis revealed significant tissue-specific alterations including changes in the expression of SDHA in the liver, an upregulated SLC16A1 in cardiac tissue (in-silico and in-vivo), a downregulated SLC5A3 in cardiac tissue (in-vivo), an upregulated SLC25A10 in cardiac tissue (in-vivo) and differential in-silico expression of SLC25A10 across liver and kidney tissues. Further network analysis indicates that Triton WR-1339 may induce hyperlipidemia by significantly elevating triglyceride levels through the inhibition of LPL.</p><p><strong>Conclusions: </strong>Our findings identify a set of metabolites as potential biomarkers of hyperlipidemia development in the Triton WR-1339 model. Correlation between gene expression analysis and metabolic profiling results demonstrates a possible mechanism in which Triton WR-1339 leads to metabolic disruption during hyperlipidemia induction.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"21 5","pages":"132"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of potential biomarkers of triton WR-1339 induced hyperlipidemia: NMR-based plasma metabolomics approach and gene expression analysis.\",\"authors\":\"Mohammad Alwahsh, Rahaf Alejel, Lama Hamadneh, Shereen M Aleidi, Rosemarie Marchan, Aya Hasan, Suhair Jasim, Fadi G Saqallah, Sameer Al-Kouz, Buthaina Hussein, Ala A Alhusban, Yusuf Al-Hiari, Tariq Al-Qirim, Roland Hergenröder\",\"doi\":\"10.1007/s11306-025-02318-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hyperlipidemia is a complex lipid metabolism disorder defined as an abnormal increase in circulating levels of one or more plasma lipids and lipoproteins. Triton WR-1339-induced hyperlipidemia model is one of the most commonly used acute models for hyperlipidemia induction in research. However, the metabolic alteration induced by Triton WR-1339 remains unclear.</p><p><strong>Aims: </strong>This study aimed to identify potential biomarkers associated with the Triton WR-1339-induced hyperlipidemia model. In addition, it aims to explore the underlying mechanisms of metabolic disturbances associated with hyperlipidemia.</p><p><strong>Methods: </strong>Male Wistar rats were administered Triton WR-1339 to induce hyperlipidemia. Plasma samples were collected for lipid assays and for metabolomics analysis using nuclear magnetic resonance spectroscopy. Gene expression in liver, cardiac, and kidney tissues of key associated transporters including SLC16A1, SLC25A10, SLC5A3, and SLC7A8 and SDHA enzyme subunit was assessed using RT-PCR. In-silico analysis complemented experimental data using NEBION Genevestigator and STITCH databases for molecular interactions.</p><p><strong>Results: </strong>Triton WR-1339 administration significantly elevated plasma triglycerides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) demonstrated distinct metabolic profiles between control and model groups. Metabolomics results identified potential biomarkers (p < 0.05), including myo-inositol, succinate, creatine, glycine, serine, isoleucine and creatine phosphate, which all showed higher levels in hyperlipidemia group compared to control group while xanthine showed lower levels in hyperlipidemia group. Potential biomarkers were associated with inflammatory, oxidative stress responses, and abnormal lipid metabolism. Gene expression analysis revealed significant tissue-specific alterations including changes in the expression of SDHA in the liver, an upregulated SLC16A1 in cardiac tissue (in-silico and in-vivo), a downregulated SLC5A3 in cardiac tissue (in-vivo), an upregulated SLC25A10 in cardiac tissue (in-vivo) and differential in-silico expression of SLC25A10 across liver and kidney tissues. Further network analysis indicates that Triton WR-1339 may induce hyperlipidemia by significantly elevating triglyceride levels through the inhibition of LPL.</p><p><strong>Conclusions: </strong>Our findings identify a set of metabolites as potential biomarkers of hyperlipidemia development in the Triton WR-1339 model. Correlation between gene expression analysis and metabolic profiling results demonstrates a possible mechanism in which Triton WR-1339 leads to metabolic disruption during hyperlipidemia induction.</p>\",\"PeriodicalId\":18506,\"journal\":{\"name\":\"Metabolomics\",\"volume\":\"21 5\",\"pages\":\"132\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11306-025-02318-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-025-02318-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Identification of potential biomarkers of triton WR-1339 induced hyperlipidemia: NMR-based plasma metabolomics approach and gene expression analysis.
Background: Hyperlipidemia is a complex lipid metabolism disorder defined as an abnormal increase in circulating levels of one or more plasma lipids and lipoproteins. Triton WR-1339-induced hyperlipidemia model is one of the most commonly used acute models for hyperlipidemia induction in research. However, the metabolic alteration induced by Triton WR-1339 remains unclear.
Aims: This study aimed to identify potential biomarkers associated with the Triton WR-1339-induced hyperlipidemia model. In addition, it aims to explore the underlying mechanisms of metabolic disturbances associated with hyperlipidemia.
Methods: Male Wistar rats were administered Triton WR-1339 to induce hyperlipidemia. Plasma samples were collected for lipid assays and for metabolomics analysis using nuclear magnetic resonance spectroscopy. Gene expression in liver, cardiac, and kidney tissues of key associated transporters including SLC16A1, SLC25A10, SLC5A3, and SLC7A8 and SDHA enzyme subunit was assessed using RT-PCR. In-silico analysis complemented experimental data using NEBION Genevestigator and STITCH databases for molecular interactions.
Results: Triton WR-1339 administration significantly elevated plasma triglycerides. Orthogonal partial least squares-discriminant analysis (OPLS-DA) demonstrated distinct metabolic profiles between control and model groups. Metabolomics results identified potential biomarkers (p < 0.05), including myo-inositol, succinate, creatine, glycine, serine, isoleucine and creatine phosphate, which all showed higher levels in hyperlipidemia group compared to control group while xanthine showed lower levels in hyperlipidemia group. Potential biomarkers were associated with inflammatory, oxidative stress responses, and abnormal lipid metabolism. Gene expression analysis revealed significant tissue-specific alterations including changes in the expression of SDHA in the liver, an upregulated SLC16A1 in cardiac tissue (in-silico and in-vivo), a downregulated SLC5A3 in cardiac tissue (in-vivo), an upregulated SLC25A10 in cardiac tissue (in-vivo) and differential in-silico expression of SLC25A10 across liver and kidney tissues. Further network analysis indicates that Triton WR-1339 may induce hyperlipidemia by significantly elevating triglyceride levels through the inhibition of LPL.
Conclusions: Our findings identify a set of metabolites as potential biomarkers of hyperlipidemia development in the Triton WR-1339 model. Correlation between gene expression analysis and metabolic profiling results demonstrates a possible mechanism in which Triton WR-1339 leads to metabolic disruption during hyperlipidemia induction.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.