以乌拉吉特为基础的静电纺丝纳米纤维改善头孢地托林酯的溶解度和渗透性:体外、离体和组织学评估。

IF 2.5 4区 医学 Q2 PHARMACOLOGY & PHARMACY
Doaa A Habib, Omar Y Mady, Youstina Samuel Salib, Heba M ElBedaiwy
{"title":"以乌拉吉特为基础的静电纺丝纳米纤维改善头孢地托林酯的溶解度和渗透性:体外、离体和组织学评估。","authors":"Doaa A Habib, Omar Y Mady, Youstina Samuel Salib, Heba M ElBedaiwy","doi":"10.1080/10837450.2025.2556057","DOIUrl":null,"url":null,"abstract":"<p><p>The dual solubility enhancement effect of nanofiber technology and pH-sensitive Eudragit L100-55 and S100 on class IV Cefditoren pivoxil (CEF) was studied. Nanofibers of different drug-polymer ratios were prepared. In-vitro characterization of CEF-loaded nanofibrous systems was performed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in-vitro drug release. SEM showed that the nanofiber prepared using S100 is thicker than that prepared using L100-55 without entrapping any drug crystals in the polymer matrix. DSC scan proved the drug was entrapped in its molecular state due to the disappearance of the drug's crystallinity. The drug release profile indicated that all nanofiber formulations exhibited a considerably higher dissolution rate than free drug in the following order ED L100-55 > ED S100 > pure drug. Drug permeability enhancement was studied by using the modified non-everted sac technique. The drug permeability agrees in the same order as the drug release profile. Histology of the intestinal segment after 90 min showed the appearance of nanoparticles in the cytoplasm of the enterocytes, indicating that the drug absorption mechanism is mainly transcellular. Histology of the intestinal segment at the end of the experiment showed a highly significant increase in the mean length of the intercellular space of EL100-55 (<i>p</i> < 0.001), indicating drug enhancement <i>via</i> the paracellular pathway.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"1-17"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eudragit-based electrospun nanofibers for improving the solubility and permeability of cefditoren pivoxil: in-vitro, ex-vivo and histological assessment.\",\"authors\":\"Doaa A Habib, Omar Y Mady, Youstina Samuel Salib, Heba M ElBedaiwy\",\"doi\":\"10.1080/10837450.2025.2556057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dual solubility enhancement effect of nanofiber technology and pH-sensitive Eudragit L100-55 and S100 on class IV Cefditoren pivoxil (CEF) was studied. Nanofibers of different drug-polymer ratios were prepared. In-vitro characterization of CEF-loaded nanofibrous systems was performed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in-vitro drug release. SEM showed that the nanofiber prepared using S100 is thicker than that prepared using L100-55 without entrapping any drug crystals in the polymer matrix. DSC scan proved the drug was entrapped in its molecular state due to the disappearance of the drug's crystallinity. The drug release profile indicated that all nanofiber formulations exhibited a considerably higher dissolution rate than free drug in the following order ED L100-55 > ED S100 > pure drug. Drug permeability enhancement was studied by using the modified non-everted sac technique. The drug permeability agrees in the same order as the drug release profile. Histology of the intestinal segment after 90 min showed the appearance of nanoparticles in the cytoplasm of the enterocytes, indicating that the drug absorption mechanism is mainly transcellular. Histology of the intestinal segment at the end of the experiment showed a highly significant increase in the mean length of the intercellular space of EL100-55 (<i>p</i> < 0.001), indicating drug enhancement <i>via</i> the paracellular pathway.</p>\",\"PeriodicalId\":20004,\"journal\":{\"name\":\"Pharmaceutical Development and Technology\",\"volume\":\" \",\"pages\":\"1-17\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Development and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10837450.2025.2556057\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2556057","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

研究了纳米纤维技术与ph敏感型乌龙油L100-55和S100对IV类头孢地酮酯(CEF)的双重增溶作用。制备了不同药聚合物比的纳米纤维。通过扫描电子显微镜(SEM)、差示扫描量热法(DSC)和体外药物释放进行了cef负载纳米纤维系统的体外表征。扫描电镜结果表明,S100制备的纳米纤维比L100-55制备的纳米纤维更厚,且没有在聚合物基体中包裹任何药物晶体。DSC扫描证明,由于药物的结晶度消失,药物被包裹在其分子状态。药物释放谱表明,在以下顺序中,所有纳米纤维制剂的溶出率都明显高于游离药物ED L100-55 b> ED S100 >纯药物。采用改良的非外翻囊技术研究了药物的通透性增强。药物渗透性与药物释放曲线的顺序一致。90分钟后肠段组织学显示肠细胞细胞质中出现纳米颗粒,说明药物吸收机制主要是跨细胞吸收。实验结束时肠段组织学显示EL100-55的细胞间隙平均长度显著增加(p < 0.001),表明药物通过细胞旁通路增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eudragit-based electrospun nanofibers for improving the solubility and permeability of cefditoren pivoxil: in-vitro, ex-vivo and histological assessment.

The dual solubility enhancement effect of nanofiber technology and pH-sensitive Eudragit L100-55 and S100 on class IV Cefditoren pivoxil (CEF) was studied. Nanofibers of different drug-polymer ratios were prepared. In-vitro characterization of CEF-loaded nanofibrous systems was performed through scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and in-vitro drug release. SEM showed that the nanofiber prepared using S100 is thicker than that prepared using L100-55 without entrapping any drug crystals in the polymer matrix. DSC scan proved the drug was entrapped in its molecular state due to the disappearance of the drug's crystallinity. The drug release profile indicated that all nanofiber formulations exhibited a considerably higher dissolution rate than free drug in the following order ED L100-55 > ED S100 > pure drug. Drug permeability enhancement was studied by using the modified non-everted sac technique. The drug permeability agrees in the same order as the drug release profile. Histology of the intestinal segment after 90 min showed the appearance of nanoparticles in the cytoplasm of the enterocytes, indicating that the drug absorption mechanism is mainly transcellular. Histology of the intestinal segment at the end of the experiment showed a highly significant increase in the mean length of the intercellular space of EL100-55 (p < 0.001), indicating drug enhancement via the paracellular pathway.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
2.90%
发文量
82
审稿时长
1 months
期刊介绍: Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology. Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as: -Preformulation and pharmaceutical formulation studies -Pharmaceutical materials selection and characterization -Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation -QbD in the form a risk assessment and DoE driven approaches -Design of dosage forms and drug delivery systems -Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies -Drug delivery systems research and quality improvement -Pharmaceutical regulatory affairs This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信