机械可调纤维基水凝胶激活piezo1整合素轴增强骨修复。

IF 12.6 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinghong Yang, Runli Li, Xiaoshuang Wang, Dongheng Lu, Weichang Li, Yan Wang
{"title":"机械可调纤维基水凝胶激活piezo1整合素轴增强骨修复。","authors":"Jinghong Yang, Runli Li, Xiaoshuang Wang, Dongheng Lu, Weichang Li, Yan Wang","doi":"10.1186/s12951-025-03653-y","DOIUrl":null,"url":null,"abstract":"<p><p>Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure. The fiber network enhances matrix stiffness and sustains Yoda1 release, promoting PIEZO1 activation in stem cells and enabling persistent mechanotransduction. In vitro, this system effectively regulates macrophage polarization, maintains cellular tension homeostasis, and significantly upregulates osteogenic markers via the PIEZO1-ITGα5 axis. Transcriptomic profiling and mechanistic validation revealed that focal adhesion and cytoskeletal signaling pathways are enriched upon hydrogel treatment. In a rat alveolar bone defect model, the OHADN fiber@Yoda1 hydrogel demonstrated superior bone volume restoration and trabecular architecture compared to conventional materials. This work presents a promising paradigm for spatiotemporal control of osteoimmune microenvironments through mechanoresponsive biomaterials.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"23 1","pages":"603"},"PeriodicalIF":12.6000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406391/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mechanically tunable fiber-based hydrogel activates PIEZO1-integrin axis for enhanced bone repair.\",\"authors\":\"Jinghong Yang, Runli Li, Xiaoshuang Wang, Dongheng Lu, Weichang Li, Yan Wang\",\"doi\":\"10.1186/s12951-025-03653-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure. The fiber network enhances matrix stiffness and sustains Yoda1 release, promoting PIEZO1 activation in stem cells and enabling persistent mechanotransduction. In vitro, this system effectively regulates macrophage polarization, maintains cellular tension homeostasis, and significantly upregulates osteogenic markers via the PIEZO1-ITGα5 axis. Transcriptomic profiling and mechanistic validation revealed that focal adhesion and cytoskeletal signaling pathways are enriched upon hydrogel treatment. In a rat alveolar bone defect model, the OHADN fiber@Yoda1 hydrogel demonstrated superior bone volume restoration and trabecular architecture compared to conventional materials. This work presents a promising paradigm for spatiotemporal control of osteoimmune microenvironments through mechanoresponsive biomaterials.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"23 1\",\"pages\":\"603\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406391/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-025-03653-y\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-025-03653-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

不规则牙槽骨缺损由于其复杂的形态和缺乏同时提供结构完整性、生物相容性和动态骨诱导潜能的生物材料,给临床带来了持续的挑战。在此,我们报告了一种纤维增强的双网络水凝胶系统(OHADN fiber@Yoda1水凝胶),旨在重现增强骨再生的机械生物学线索。这种可注射水凝胶将氧化透明质酸(OHA)与yoda1负载的plga -胶原纤维片段交联在一起,并通过儿茶酚- fe³+配合稳定,形成了一种坚固的自愈结构。纤维网络增强基质刚度并维持Yoda1的释放,促进PIEZO1在干细胞中的激活并实现持续的机械转导。在体外,该系统通过piezo1 - itg - α5轴有效调节巨噬细胞极化,维持细胞张力稳态,并显著上调成骨标志物。转录组学分析和机制验证表明,在水凝胶处理后,局灶黏附和细胞骨架信号通路丰富。在大鼠牙槽骨缺损模型中,与传统材料相比,OHADN fiber@Yoda1水凝胶表现出更好的骨体积修复和小梁结构。这项工作为通过机械反应性生物材料对骨免疫微环境的时空控制提供了一个有希望的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanically tunable fiber-based hydrogel activates PIEZO1-integrin axis for enhanced bone repair.

Irregular alveolar bone defects pose persistent clinical challenges due to their complex morphology and the lack of biomaterials that simultaneously provide structural integrity, biocompatibility, and dynamic osteoinductive potential. Herein, we report a fiber-reinforced, dual-network hydrogel system (OHADN fiber@Yoda1 hydrogel) engineered to recapitulate mechanobiological cues for enhanced bone regeneration. This injectable hydrogel integrates oxidized hyaluronic acid (OHA) crosslinked with Yoda1-loaded PLGA-collagen fiber fragments and stabilized via catechol-Fe³⁺ coordination, forming a robust and self-healing structure. The fiber network enhances matrix stiffness and sustains Yoda1 release, promoting PIEZO1 activation in stem cells and enabling persistent mechanotransduction. In vitro, this system effectively regulates macrophage polarization, maintains cellular tension homeostasis, and significantly upregulates osteogenic markers via the PIEZO1-ITGα5 axis. Transcriptomic profiling and mechanistic validation revealed that focal adhesion and cytoskeletal signaling pathways are enriched upon hydrogel treatment. In a rat alveolar bone defect model, the OHADN fiber@Yoda1 hydrogel demonstrated superior bone volume restoration and trabecular architecture compared to conventional materials. This work presents a promising paradigm for spatiotemporal control of osteoimmune microenvironments through mechanoresponsive biomaterials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanobiotechnology
Journal of Nanobiotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
13.90
自引率
4.90%
发文量
493
审稿时长
16 weeks
期刊介绍: Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信