血液和脑脊液金属组学揭示了新生帕金森病中汞、铬和铁的改变。

IF 5 3区 医学 Q2 NEUROSCIENCES
Petr Dušek, Ranjani Ganapathy Subramanian, Tereza Serranová, Karel Šonka, Evžen Růžička, Jan Kuta
{"title":"血液和脑脊液金属组学揭示了新生帕金森病中汞、铬和铁的改变。","authors":"Petr Dušek, Ranjani Ganapathy Subramanian, Tereza Serranová, Karel Šonka, Evžen Růžička, Jan Kuta","doi":"10.1177/1877718X251367303","DOIUrl":null,"url":null,"abstract":"<p><p>BackgroundGiven the increasing global prevalence of Parkinson's disease (PD) and its complex etiopathogenesis, understanding the role of environmental factors is crucial. Prior investigations suggested a potential link between metal exposure and PD, yet conflicting results emerged.ObjectiveTo identify differences in metal concentrations in whole blood and cerebrospinal fluid (CSF) in PD patients compared to controls.MethodsThe study involved an untreated de novo PD patient cohort from a single-center (n = 102, 38% females, mean age 59.5 (SD 12.5)) and a group of controls with comparable age and sex distribution (n = 127, 35% females, mean age 57.5 (SD 12.4)). Whole blood in all participants and CSF samples in a subgroup (n = 57/55 PD/controls) were collected and concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Hg, and Pb, were determined through inductively coupled plasma mass spectrometry.ResultsPD patients exhibited higher concentrations of Hg in both blood and CSF (p = 0.003). Cr concentrations were lower in both blood (p = 0.004) and CSF (p < 0.001) of PD patients. Altered Fe metabolism was evident, with higher blood (p = 0.001) and lower CSF (p = 0.002) Fe concentrations. Other metal alterations in PD included higher Zn (p = 0.008) in blood and lower Co (p < 0.001), Mn (p = 0.006), V (p = 0.009), and Ni (p < 0.001) in CSF.ConclusionsThe findings highlight abnormalities in metal concentrations in biofluids associated with PD, particularly regarding Hg, Cr, and Fe which exhibited alterations in blood and CSF. These findings suggest metal dysregulation in PD, particularly Hg, Cr, and Fe, with potential implications for understanding PD pathogenesis.</p>","PeriodicalId":16660,"journal":{"name":"Journal of Parkinson's disease","volume":" ","pages":"1877718X251367303"},"PeriodicalIF":5.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blood and cerebrospinal fluid metallomics uncover mercury, chromium, and iron alterations in <i>de novo</i> Parkinson's disease.\",\"authors\":\"Petr Dušek, Ranjani Ganapathy Subramanian, Tereza Serranová, Karel Šonka, Evžen Růžička, Jan Kuta\",\"doi\":\"10.1177/1877718X251367303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>BackgroundGiven the increasing global prevalence of Parkinson's disease (PD) and its complex etiopathogenesis, understanding the role of environmental factors is crucial. Prior investigations suggested a potential link between metal exposure and PD, yet conflicting results emerged.ObjectiveTo identify differences in metal concentrations in whole blood and cerebrospinal fluid (CSF) in PD patients compared to controls.MethodsThe study involved an untreated de novo PD patient cohort from a single-center (n = 102, 38% females, mean age 59.5 (SD 12.5)) and a group of controls with comparable age and sex distribution (n = 127, 35% females, mean age 57.5 (SD 12.4)). Whole blood in all participants and CSF samples in a subgroup (n = 57/55 PD/controls) were collected and concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Hg, and Pb, were determined through inductively coupled plasma mass spectrometry.ResultsPD patients exhibited higher concentrations of Hg in both blood and CSF (p = 0.003). Cr concentrations were lower in both blood (p = 0.004) and CSF (p < 0.001) of PD patients. Altered Fe metabolism was evident, with higher blood (p = 0.001) and lower CSF (p = 0.002) Fe concentrations. Other metal alterations in PD included higher Zn (p = 0.008) in blood and lower Co (p < 0.001), Mn (p = 0.006), V (p = 0.009), and Ni (p < 0.001) in CSF.ConclusionsThe findings highlight abnormalities in metal concentrations in biofluids associated with PD, particularly regarding Hg, Cr, and Fe which exhibited alterations in blood and CSF. These findings suggest metal dysregulation in PD, particularly Hg, Cr, and Fe, with potential implications for understanding PD pathogenesis.</p>\",\"PeriodicalId\":16660,\"journal\":{\"name\":\"Journal of Parkinson's disease\",\"volume\":\" \",\"pages\":\"1877718X251367303\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Parkinson's disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/1877718X251367303\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Parkinson's disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/1877718X251367303","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

鉴于帕金森病(PD)的全球患病率不断上升及其复杂的发病机制,了解环境因素的作用至关重要。先前的调查表明金属暴露与帕金森病之间存在潜在联系,但出现了相互矛盾的结果。目的探讨PD患者全血和脑脊液中金属浓度与对照组的差异。方法本研究纳入了来自单中心的未经治疗的PD患者队列(n = 102,女性占38%,平均年龄59.5 (SD 12.5))和一组年龄和性别分布相似的对照组(n = 127,女性占35%,平均年龄57.5 (SD 12.4))。收集所有参与者的全血和一个亚组(n = 57/55 PD/对照)的脑脊液样本,并通过电感耦合等离子体质谱测定V、Cr、Mn、Fe、Co、Ni、Cu、Zn、As、Se、Mo、Cd、Sn、Hg和Pb的浓度。结果spd患者血液和脑脊液中汞浓度均高于对照组(p = 0.003)。血液和脑脊液中铬浓度均较低(p = 0.004)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blood and cerebrospinal fluid metallomics uncover mercury, chromium, and iron alterations in de novo Parkinson's disease.

BackgroundGiven the increasing global prevalence of Parkinson's disease (PD) and its complex etiopathogenesis, understanding the role of environmental factors is crucial. Prior investigations suggested a potential link between metal exposure and PD, yet conflicting results emerged.ObjectiveTo identify differences in metal concentrations in whole blood and cerebrospinal fluid (CSF) in PD patients compared to controls.MethodsThe study involved an untreated de novo PD patient cohort from a single-center (n = 102, 38% females, mean age 59.5 (SD 12.5)) and a group of controls with comparable age and sex distribution (n = 127, 35% females, mean age 57.5 (SD 12.4)). Whole blood in all participants and CSF samples in a subgroup (n = 57/55 PD/controls) were collected and concentrations of V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Hg, and Pb, were determined through inductively coupled plasma mass spectrometry.ResultsPD patients exhibited higher concentrations of Hg in both blood and CSF (p = 0.003). Cr concentrations were lower in both blood (p = 0.004) and CSF (p < 0.001) of PD patients. Altered Fe metabolism was evident, with higher blood (p = 0.001) and lower CSF (p = 0.002) Fe concentrations. Other metal alterations in PD included higher Zn (p = 0.008) in blood and lower Co (p < 0.001), Mn (p = 0.006), V (p = 0.009), and Ni (p < 0.001) in CSF.ConclusionsThe findings highlight abnormalities in metal concentrations in biofluids associated with PD, particularly regarding Hg, Cr, and Fe which exhibited alterations in blood and CSF. These findings suggest metal dysregulation in PD, particularly Hg, Cr, and Fe, with potential implications for understanding PD pathogenesis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
5.80%
发文量
338
审稿时长
>12 weeks
期刊介绍: The Journal of Parkinson''s Disease (JPD) publishes original research in basic science, translational research and clinical medicine in Parkinson’s disease in cooperation with the Journal of Alzheimer''s Disease. It features a first class Editorial Board and provides rigorous peer review and rapid online publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信