用于光学相干弹性成像的乳房模拟模型的研制。

IF 2.9 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2025-12-01 Epub Date: 2025-09-02 DOI:10.1117/1.JBO.30.12.124504
Farzan Navaeipour, Rowan W Sanderson, Jiayue Li, Scarlett Rawlins, Matt S Hepburn, Brendan F Kennedy
{"title":"用于光学相干弹性成像的乳房模拟模型的研制。","authors":"Farzan Navaeipour, Rowan W Sanderson, Jiayue Li, Scarlett Rawlins, Matt S Hepburn, Brendan F Kennedy","doi":"10.1117/1.JBO.30.12.124504","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Optical coherence elastography (OCE) is an emerging technique for mapping tissue mechanical properties into an image, known as an elastogram, with microscale resolution. Although system characterization phantoms are widely used in OCE development, there is a critical need for tissue-mimicking phantoms that can more accurately replicate the complex structural and mechanical properties of tissues, particularly for validating clinical applications, such as in breast cancer.</p><p><strong>Aim: </strong>We aim to investigate the effects of tissue-like structures on elastogram formation in a controlled environment by developing and characterizing two types of breast tissue-mimicking phantoms, replicating invasive ductal carcinoma (IDC) morphology and the other mimicking breast ductal networks.</p><p><strong>Approach: </strong>We present a comprehensive methodology for fabricating breast-mimicking phantoms using optical coherence tomography and ductography images to provide information on tissue structure. The method employs 3D-printed molds, casting different silicone materials for IDC-mimicking phantoms and implementing a dissolving mold technique to create duct-mimicking phantoms, which can be tested in both empty and fluid-filled states.</p><p><strong>Results: </strong>The IDC-mimicking phantom successfully replicates structural features as small as <math><mrow><mn>100</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , revealing complex mechanical behaviors at tissue interfaces, including strain concentrations where tissues of different stiffness interact. The duct-mimicking phantom demonstrates distinct mechanical responses between configurations, with hollow ducts creating sharp discontinuities at boundaries, whereas fluid-filled ducts exhibit more gradual transitions in mechanical properties.</p><p><strong>Conclusions: </strong>Our methodology demonstrates the capability to fabricate breast tissue-mimicking phantoms that reproduce both the structural and mechanical properties of breast tissue, providing a controlled environment for investigating OCE performance and understanding how tissue architecture influences elastogram formation, particularly at interfaces among different tissue types.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 12","pages":"124504"},"PeriodicalIF":2.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of breast-mimicking phantoms for use in optical coherence elastography.\",\"authors\":\"Farzan Navaeipour, Rowan W Sanderson, Jiayue Li, Scarlett Rawlins, Matt S Hepburn, Brendan F Kennedy\",\"doi\":\"10.1117/1.JBO.30.12.124504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Optical coherence elastography (OCE) is an emerging technique for mapping tissue mechanical properties into an image, known as an elastogram, with microscale resolution. Although system characterization phantoms are widely used in OCE development, there is a critical need for tissue-mimicking phantoms that can more accurately replicate the complex structural and mechanical properties of tissues, particularly for validating clinical applications, such as in breast cancer.</p><p><strong>Aim: </strong>We aim to investigate the effects of tissue-like structures on elastogram formation in a controlled environment by developing and characterizing two types of breast tissue-mimicking phantoms, replicating invasive ductal carcinoma (IDC) morphology and the other mimicking breast ductal networks.</p><p><strong>Approach: </strong>We present a comprehensive methodology for fabricating breast-mimicking phantoms using optical coherence tomography and ductography images to provide information on tissue structure. The method employs 3D-printed molds, casting different silicone materials for IDC-mimicking phantoms and implementing a dissolving mold technique to create duct-mimicking phantoms, which can be tested in both empty and fluid-filled states.</p><p><strong>Results: </strong>The IDC-mimicking phantom successfully replicates structural features as small as <math><mrow><mn>100</mn> <mtext>  </mtext> <mi>μ</mi> <mi>m</mi></mrow> </math> , revealing complex mechanical behaviors at tissue interfaces, including strain concentrations where tissues of different stiffness interact. The duct-mimicking phantom demonstrates distinct mechanical responses between configurations, with hollow ducts creating sharp discontinuities at boundaries, whereas fluid-filled ducts exhibit more gradual transitions in mechanical properties.</p><p><strong>Conclusions: </strong>Our methodology demonstrates the capability to fabricate breast tissue-mimicking phantoms that reproduce both the structural and mechanical properties of breast tissue, providing a controlled environment for investigating OCE performance and understanding how tissue architecture influences elastogram formation, particularly at interfaces among different tissue types.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 12\",\"pages\":\"124504\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12404407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.12.124504\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.12.124504","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:光学相干弹性成像(OCE)是一种新兴的技术,用于将组织力学特性映射到图像中,称为弹性图,具有微尺度分辨率。尽管系统表征模型在OCE开发中被广泛使用,但对于能够更准确地复制组织复杂结构和机械特性的组织模拟模型,特别是在验证乳腺癌等临床应用方面,仍有迫切的需求。目的:研究组织样结构在受控环境下对弹性图形成的影响,通过发展和表征两种类型的乳腺组织模拟幻象,复制浸润性导管癌(IDC)形态和另一种模拟乳腺导管网络。方法:我们提出了一种综合的方法,利用光学相干断层扫描和导管成像来提供组织结构的信息。该方法采用3d打印模具,铸造不同的硅胶材料来模拟idc模型,并实施溶解模具技术来创建模拟管道的模型,可以在空状态和充满液体的状态下进行测试。结果:模拟idc的模型成功地复制了小至100 μ m的结构特征,揭示了组织界面上复杂的力学行为,包括不同刚度组织相互作用时的应变浓度。管道模拟模型在不同结构之间表现出明显的机械响应,空心管道在边界处产生明显的不连续,而充满流体的管道在机械性能上表现出更渐进的转变。结论:我们的方法证明了制造乳房组织模拟模型的能力,该模型可以再现乳房组织的结构和力学特性,为研究OCE性能和理解组织结构如何影响弹性图的形成提供了一个可控的环境,特别是在不同组织类型的界面上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of breast-mimicking phantoms for use in optical coherence elastography.

Significance: Optical coherence elastography (OCE) is an emerging technique for mapping tissue mechanical properties into an image, known as an elastogram, with microscale resolution. Although system characterization phantoms are widely used in OCE development, there is a critical need for tissue-mimicking phantoms that can more accurately replicate the complex structural and mechanical properties of tissues, particularly for validating clinical applications, such as in breast cancer.

Aim: We aim to investigate the effects of tissue-like structures on elastogram formation in a controlled environment by developing and characterizing two types of breast tissue-mimicking phantoms, replicating invasive ductal carcinoma (IDC) morphology and the other mimicking breast ductal networks.

Approach: We present a comprehensive methodology for fabricating breast-mimicking phantoms using optical coherence tomography and ductography images to provide information on tissue structure. The method employs 3D-printed molds, casting different silicone materials for IDC-mimicking phantoms and implementing a dissolving mold technique to create duct-mimicking phantoms, which can be tested in both empty and fluid-filled states.

Results: The IDC-mimicking phantom successfully replicates structural features as small as 100    μ m , revealing complex mechanical behaviors at tissue interfaces, including strain concentrations where tissues of different stiffness interact. The duct-mimicking phantom demonstrates distinct mechanical responses between configurations, with hollow ducts creating sharp discontinuities at boundaries, whereas fluid-filled ducts exhibit more gradual transitions in mechanical properties.

Conclusions: Our methodology demonstrates the capability to fabricate breast tissue-mimicking phantoms that reproduce both the structural and mechanical properties of breast tissue, providing a controlled environment for investigating OCE performance and understanding how tissue architecture influences elastogram formation, particularly at interfaces among different tissue types.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信