{"title":"通过靶向小胶质p38 mapk介导的神经炎症和神经元内质网应激,PRE-084激活Sigma-1受体可减轻败血症相关脑病。","authors":"Xin Zeng, Wen Kang, Qin Zhou, Xia Pan, Long Wang","doi":"10.1007/s00011-025-02086-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis-Associated Encephalopathy (SAE) is a severe neurological complication of sepsis, where neuroinflammation plays a critical pathogenic role, leading to cognitive dysfunction. The Sigma-1 receptor (Sigma-1R), a chaperone protein, is implicated in neuroprotection, including the crucial modulation of neuroinflammation and endoplasmic reticulum stress (ERS). This study aimed to investigate the therapeutic potential of the Sigma-1R agonist, PRE-084, in specifically targeting SAE-associated neuroinflammation and its downstream neuropathology.</p><p><strong>Methods: </strong>A cecal ligation and puncture (CLP) murine model of sepsis was established. Mice received the Sigma-1R agonist PRE-084 or saline. Neurological function (SHIRPA), survival rates, and cognitive performance (Morris Water Maze) were assessed. Hippocampal and cortical tissues were analyzed for Sigma-1R expression and localization, ERS markers (BiP, p-eIF2α), synaptic protein levels (PSD95, Synaptophysin), glial cell activation (Iba-1, GFAP), pro-inflammatory cytokine levels (TNF-α, IL-6), and p38 Mitogen-Activated Protein Kinase (p38 MAPK) pathway activation using Western blotting, immunofluorescence, and ELISA.</p><p><strong>Result: </strong>CLP surgery induced neurological deficits, reduced survival, and upregulated neuronal Sigma-1R in the hippocampus. PRE-084 administration significantly improved survival rates, ameliorated neurological impairments, and attenuated cognitive dysfunction in CLP mice. Mechanistically, PRE-084 treatment directly mitigated neuronal CLP-induced ERS (reduced BiP expression and eIF2α phosphorylation) and preserved hippocampal postsynaptic density protein 95 (PSD95) levels. Crucially, these primary neuroprotective effects on neurons translated into a profound suppression of neuroinflammation, evidenced by reduced microglial (Iba-1) and astrocyte (GFAP) activation, decreased brain levels of pro-inflammatory cytokines TNF-α and IL-6, and specific inhibition of microglial p38 MAPK activation. This indicates an indirect but potent anti-inflammatory effect stemming from primary neuronal Sigma-1R engagement.</p><p><strong>Conclusion: </strong>Our findings demonstrate that activation of neuronal Sigma-1R by PRE-084 confers protection against SAE. This protection involves primary mitigation of neuronal ERS, which is pivotal in subsequently dampening the detrimental microglial p38 MAPK-mediated neuroinflammatory cascade. This multifaceted action, culminating in reduced neuroinflammation, improves neurological outcomes and cognitive function. Targeting Sigma-1R to control neuroinflammation offers a promising therapeutic strategy for SAE.</p>","PeriodicalId":13550,"journal":{"name":"Inflammation Research","volume":"74 1","pages":"117"},"PeriodicalIF":5.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sigma-1 receptor activation by PRE-084 attenuates sepsis-associated encephalopathy by targeting microglial p38 MAPK-mediated neuroinflammation and neuronal endoplasmic reticulum stress.\",\"authors\":\"Xin Zeng, Wen Kang, Qin Zhou, Xia Pan, Long Wang\",\"doi\":\"10.1007/s00011-025-02086-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Sepsis-Associated Encephalopathy (SAE) is a severe neurological complication of sepsis, where neuroinflammation plays a critical pathogenic role, leading to cognitive dysfunction. The Sigma-1 receptor (Sigma-1R), a chaperone protein, is implicated in neuroprotection, including the crucial modulation of neuroinflammation and endoplasmic reticulum stress (ERS). This study aimed to investigate the therapeutic potential of the Sigma-1R agonist, PRE-084, in specifically targeting SAE-associated neuroinflammation and its downstream neuropathology.</p><p><strong>Methods: </strong>A cecal ligation and puncture (CLP) murine model of sepsis was established. Mice received the Sigma-1R agonist PRE-084 or saline. Neurological function (SHIRPA), survival rates, and cognitive performance (Morris Water Maze) were assessed. Hippocampal and cortical tissues were analyzed for Sigma-1R expression and localization, ERS markers (BiP, p-eIF2α), synaptic protein levels (PSD95, Synaptophysin), glial cell activation (Iba-1, GFAP), pro-inflammatory cytokine levels (TNF-α, IL-6), and p38 Mitogen-Activated Protein Kinase (p38 MAPK) pathway activation using Western blotting, immunofluorescence, and ELISA.</p><p><strong>Result: </strong>CLP surgery induced neurological deficits, reduced survival, and upregulated neuronal Sigma-1R in the hippocampus. PRE-084 administration significantly improved survival rates, ameliorated neurological impairments, and attenuated cognitive dysfunction in CLP mice. Mechanistically, PRE-084 treatment directly mitigated neuronal CLP-induced ERS (reduced BiP expression and eIF2α phosphorylation) and preserved hippocampal postsynaptic density protein 95 (PSD95) levels. Crucially, these primary neuroprotective effects on neurons translated into a profound suppression of neuroinflammation, evidenced by reduced microglial (Iba-1) and astrocyte (GFAP) activation, decreased brain levels of pro-inflammatory cytokines TNF-α and IL-6, and specific inhibition of microglial p38 MAPK activation. This indicates an indirect but potent anti-inflammatory effect stemming from primary neuronal Sigma-1R engagement.</p><p><strong>Conclusion: </strong>Our findings demonstrate that activation of neuronal Sigma-1R by PRE-084 confers protection against SAE. This protection involves primary mitigation of neuronal ERS, which is pivotal in subsequently dampening the detrimental microglial p38 MAPK-mediated neuroinflammatory cascade. This multifaceted action, culminating in reduced neuroinflammation, improves neurological outcomes and cognitive function. Targeting Sigma-1R to control neuroinflammation offers a promising therapeutic strategy for SAE.</p>\",\"PeriodicalId\":13550,\"journal\":{\"name\":\"Inflammation Research\",\"volume\":\"74 1\",\"pages\":\"117\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00011-025-02086-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00011-025-02086-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Sigma-1 receptor activation by PRE-084 attenuates sepsis-associated encephalopathy by targeting microglial p38 MAPK-mediated neuroinflammation and neuronal endoplasmic reticulum stress.
Background: Sepsis-Associated Encephalopathy (SAE) is a severe neurological complication of sepsis, where neuroinflammation plays a critical pathogenic role, leading to cognitive dysfunction. The Sigma-1 receptor (Sigma-1R), a chaperone protein, is implicated in neuroprotection, including the crucial modulation of neuroinflammation and endoplasmic reticulum stress (ERS). This study aimed to investigate the therapeutic potential of the Sigma-1R agonist, PRE-084, in specifically targeting SAE-associated neuroinflammation and its downstream neuropathology.
Methods: A cecal ligation and puncture (CLP) murine model of sepsis was established. Mice received the Sigma-1R agonist PRE-084 or saline. Neurological function (SHIRPA), survival rates, and cognitive performance (Morris Water Maze) were assessed. Hippocampal and cortical tissues were analyzed for Sigma-1R expression and localization, ERS markers (BiP, p-eIF2α), synaptic protein levels (PSD95, Synaptophysin), glial cell activation (Iba-1, GFAP), pro-inflammatory cytokine levels (TNF-α, IL-6), and p38 Mitogen-Activated Protein Kinase (p38 MAPK) pathway activation using Western blotting, immunofluorescence, and ELISA.
Result: CLP surgery induced neurological deficits, reduced survival, and upregulated neuronal Sigma-1R in the hippocampus. PRE-084 administration significantly improved survival rates, ameliorated neurological impairments, and attenuated cognitive dysfunction in CLP mice. Mechanistically, PRE-084 treatment directly mitigated neuronal CLP-induced ERS (reduced BiP expression and eIF2α phosphorylation) and preserved hippocampal postsynaptic density protein 95 (PSD95) levels. Crucially, these primary neuroprotective effects on neurons translated into a profound suppression of neuroinflammation, evidenced by reduced microglial (Iba-1) and astrocyte (GFAP) activation, decreased brain levels of pro-inflammatory cytokines TNF-α and IL-6, and specific inhibition of microglial p38 MAPK activation. This indicates an indirect but potent anti-inflammatory effect stemming from primary neuronal Sigma-1R engagement.
Conclusion: Our findings demonstrate that activation of neuronal Sigma-1R by PRE-084 confers protection against SAE. This protection involves primary mitigation of neuronal ERS, which is pivotal in subsequently dampening the detrimental microglial p38 MAPK-mediated neuroinflammatory cascade. This multifaceted action, culminating in reduced neuroinflammation, improves neurological outcomes and cognitive function. Targeting Sigma-1R to control neuroinflammation offers a promising therapeutic strategy for SAE.
期刊介绍:
Inflammation Research (IR) publishes peer-reviewed papers on all aspects of inflammation and related fields including histopathology, immunological mechanisms, gene expression, mediators, experimental models, clinical investigations and the effect of drugs. Related fields are broadly defined and include for instance, allergy and asthma, shock, pain, joint damage, skin disease as well as clinical trials of relevant drugs.