基于混合融合EEGNetv4和联邦学习的脑电痴呆分类。

IF 2.3 4区 医学 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in Computational Neuroscience Pub Date : 2025-08-18 eCollection Date: 2025-01-01 DOI:10.3389/fncom.2025.1617883
Muhammad Umair, Muhammad Shahbaz Khan, Muhammad Hanif, Wad Ghaban, Ibtehal Nafea, Sultan Noman Qasem, Faisal Saeed
{"title":"基于混合融合EEGNetv4和联邦学习的脑电痴呆分类。","authors":"Muhammad Umair, Muhammad Shahbaz Khan, Muhammad Hanif, Wad Ghaban, Ibtehal Nafea, Sultan Noman Qasem, Faisal Saeed","doi":"10.3389/fncom.2025.1617883","DOIUrl":null,"url":null,"abstract":"<p><p>As global life expectancy rises, a growing proportion of the population is affected by dementia, particularly Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Electroencephalography (EEG) based diagnosis presents a non-invasive, cost effective alternative for early detection, yet existing methods are challenged by data scarcity, inter-subject variability, and privacy concerns. This study proposes lightweight and privacy-preserving EEG classification framework combining deep learning and Federated Learning (FL). Five convolutional neural networks (EEGNetv1, EEGNetv4, EEGITNet, EEGInception, EEGInceptionERP) have been evaluated on resting-state EEG dataset comprising 88 subjects. EEG signals are preprocessed using band-pass (1-45 Hz) and notch filtering, followed by exponential standardization and 4-second windowing. EEGNetv4 outperformed among other EEG tailored models, and upon utilizing the hybrid fusion techniques it achieves 97.1% accuracy using only 1,609 parameters and less than 1 MB of memory, demonstrating high efficiency. Moreover, FL using FedAvg is implemented across five stratified clients, achieving 96.9% accuracy on the hybrid fused EEGNetV4 model while preserving data privacy. This work establishes a scalable, resource-efficient, and privacy-compliant framework for EEG-based dementia diagnosis, suitable for deployment in real-world clinical and edge-device settings.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1617883"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399531/pdf/","citationCount":"0","resultStr":"{\"title\":\"Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.\",\"authors\":\"Muhammad Umair, Muhammad Shahbaz Khan, Muhammad Hanif, Wad Ghaban, Ibtehal Nafea, Sultan Noman Qasem, Faisal Saeed\",\"doi\":\"10.3389/fncom.2025.1617883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As global life expectancy rises, a growing proportion of the population is affected by dementia, particularly Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Electroencephalography (EEG) based diagnosis presents a non-invasive, cost effective alternative for early detection, yet existing methods are challenged by data scarcity, inter-subject variability, and privacy concerns. This study proposes lightweight and privacy-preserving EEG classification framework combining deep learning and Federated Learning (FL). Five convolutional neural networks (EEGNetv1, EEGNetv4, EEGITNet, EEGInception, EEGInceptionERP) have been evaluated on resting-state EEG dataset comprising 88 subjects. EEG signals are preprocessed using band-pass (1-45 Hz) and notch filtering, followed by exponential standardization and 4-second windowing. EEGNetv4 outperformed among other EEG tailored models, and upon utilizing the hybrid fusion techniques it achieves 97.1% accuracy using only 1,609 parameters and less than 1 MB of memory, demonstrating high efficiency. Moreover, FL using FedAvg is implemented across five stratified clients, achieving 96.9% accuracy on the hybrid fused EEGNetV4 model while preserving data privacy. This work establishes a scalable, resource-efficient, and privacy-compliant framework for EEG-based dementia diagnosis, suitable for deployment in real-world clinical and edge-device settings.</p>\",\"PeriodicalId\":12363,\"journal\":{\"name\":\"Frontiers in Computational Neuroscience\",\"volume\":\"19 \",\"pages\":\"1617883\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12399531/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computational Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fncom.2025.1617883\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1617883","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

随着全球预期寿命的延长,越来越多的人口受到痴呆症的影响,特别是阿尔茨海默病(AD)和额颞叶痴呆(FTD)。基于脑电图(EEG)的诊断为早期检测提供了一种无创、经济有效的替代方法,但现有方法受到数据稀缺、主体间可变性和隐私问题的挑战。本研究提出了一种结合深度学习和联邦学习(FL)的轻量级且保护隐私的脑电信号分类框架。在88个被试的静息状态脑电数据集上对5种卷积神经网络(EEGNetv1、EEGNetv4、EEGITNet、EEGInception、EEGInceptionERP)进行了评价。脑电信号预处理采用带通(1-45 Hz)和陷波滤波,然后进行指数标准化和4秒加窗。EEGNetv4在其他EEG定制模型中表现出色,利用混合融合技术,仅使用1,609个参数和小于1 MB的内存,准确率达到97.1%,显示出高效率。此外,使用fedag的FL在五个分层客户端上实现,在混合融合EEGNetV4模型上实现了96.9%的准确率,同时保护了数据隐私。这项工作为基于脑电图的痴呆症诊断建立了一个可扩展、资源高效且符合隐私的框架,适合在现实世界的临床和边缘设备设置中部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.

Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.

Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.

Privacy-preserving dementia classification from EEG via hybrid-fusion EEGNetv4 and federated learning.

As global life expectancy rises, a growing proportion of the population is affected by dementia, particularly Alzheimer's disease (AD) and Frontotemporal dementia (FTD). Electroencephalography (EEG) based diagnosis presents a non-invasive, cost effective alternative for early detection, yet existing methods are challenged by data scarcity, inter-subject variability, and privacy concerns. This study proposes lightweight and privacy-preserving EEG classification framework combining deep learning and Federated Learning (FL). Five convolutional neural networks (EEGNetv1, EEGNetv4, EEGITNet, EEGInception, EEGInceptionERP) have been evaluated on resting-state EEG dataset comprising 88 subjects. EEG signals are preprocessed using band-pass (1-45 Hz) and notch filtering, followed by exponential standardization and 4-second windowing. EEGNetv4 outperformed among other EEG tailored models, and upon utilizing the hybrid fusion techniques it achieves 97.1% accuracy using only 1,609 parameters and less than 1 MB of memory, demonstrating high efficiency. Moreover, FL using FedAvg is implemented across five stratified clients, achieving 96.9% accuracy on the hybrid fused EEGNetV4 model while preserving data privacy. This work establishes a scalable, resource-efficient, and privacy-compliant framework for EEG-based dementia diagnosis, suitable for deployment in real-world clinical and edge-device settings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computational Neuroscience
Frontiers in Computational Neuroscience MATHEMATICAL & COMPUTATIONAL BIOLOGY-NEUROSCIENCES
CiteScore
5.30
自引率
3.10%
发文量
166
审稿时长
6-12 weeks
期刊介绍: Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions. Also: comp neuro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信