Viana Q Pham, Melike Tutunculer, Halah Al-Dulaimi, Daniel Ardjmand, William Fleischmann, Tomas P Bachor, Allison W Xu
{"title":"神经毒素暴露对中隆起和后脑区开孔血管的调节及其在衰老中的损害。","authors":"Viana Q Pham, Melike Tutunculer, Halah Al-Dulaimi, Daniel Ardjmand, William Fleischmann, Tomas P Bachor, Allison W Xu","doi":"10.3389/fnagi.2025.1634283","DOIUrl":null,"url":null,"abstract":"<p><p>Effective communication between the brain and peripheral tissues is crucial for homeostasis and health, and its impairment is a defining feature of aging. Circumventricular organs, characterized by the presence of fenestrated capillaries and absence of a blood-brain barrier (BBB), play a crucial role in controlling substance exchange between the brain and the blood. To date, adaptive changes in fenestrated vasculature in response to environmental insults remain poorly understood. In this study, we show that fenestrated capillaries in the median eminence (ME) and area postrema (AP)-two distinct circumventricular organs critical for metabolic control-undergo differential remodeling when exposed to circulating monosodium glutamate (MSG), a BBB-impermeable neurotoxin. Upon MSG exposure, fenestrated capillaries and vascular permeability were decreased in the ME but increased in the AP, and these changes were closely associated with the expression of angiogenic factors pleiotrophin (<i>Ptn</i>) and vascular endothelial growth factor A (<i>Vegfa</i>). In both ME and AP, adult tanycytes expressed high levels of <i>Ptn</i> and have processes in close contact with fenestrated capillaries. Significantly, the adaptive regulation of <i>Ptn</i> expression and the ability to modulate fenestrated capillaries and vascular permeability were abolished in both ME and AP of aged animals. Together, our findings suggest that tanycytic expressions of the angiogenic factor PTN, in conjunction with VEGF, are differentially regulated in distinct circumventricular organs upon exposure to neurotoxins, leading to region-specific remodeling of fenestrated endothelium. Our study further demonstrates that the loss of plasticity in fenestrated vasculature may be a hallmark feature of brain aging.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1634283"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401994/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modulation of fenestrated vasculature in the median eminence and area postrema in response to neurotoxin exposure and its impairment in aging.\",\"authors\":\"Viana Q Pham, Melike Tutunculer, Halah Al-Dulaimi, Daniel Ardjmand, William Fleischmann, Tomas P Bachor, Allison W Xu\",\"doi\":\"10.3389/fnagi.2025.1634283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Effective communication between the brain and peripheral tissues is crucial for homeostasis and health, and its impairment is a defining feature of aging. Circumventricular organs, characterized by the presence of fenestrated capillaries and absence of a blood-brain barrier (BBB), play a crucial role in controlling substance exchange between the brain and the blood. To date, adaptive changes in fenestrated vasculature in response to environmental insults remain poorly understood. In this study, we show that fenestrated capillaries in the median eminence (ME) and area postrema (AP)-two distinct circumventricular organs critical for metabolic control-undergo differential remodeling when exposed to circulating monosodium glutamate (MSG), a BBB-impermeable neurotoxin. Upon MSG exposure, fenestrated capillaries and vascular permeability were decreased in the ME but increased in the AP, and these changes were closely associated with the expression of angiogenic factors pleiotrophin (<i>Ptn</i>) and vascular endothelial growth factor A (<i>Vegfa</i>). In both ME and AP, adult tanycytes expressed high levels of <i>Ptn</i> and have processes in close contact with fenestrated capillaries. Significantly, the adaptive regulation of <i>Ptn</i> expression and the ability to modulate fenestrated capillaries and vascular permeability were abolished in both ME and AP of aged animals. Together, our findings suggest that tanycytic expressions of the angiogenic factor PTN, in conjunction with VEGF, are differentially regulated in distinct circumventricular organs upon exposure to neurotoxins, leading to region-specific remodeling of fenestrated endothelium. Our study further demonstrates that the loss of plasticity in fenestrated vasculature may be a hallmark feature of brain aging.</p>\",\"PeriodicalId\":12450,\"journal\":{\"name\":\"Frontiers in Aging Neuroscience\",\"volume\":\"17 \",\"pages\":\"1634283\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401994/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Aging Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnagi.2025.1634283\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1634283","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Modulation of fenestrated vasculature in the median eminence and area postrema in response to neurotoxin exposure and its impairment in aging.
Effective communication between the brain and peripheral tissues is crucial for homeostasis and health, and its impairment is a defining feature of aging. Circumventricular organs, characterized by the presence of fenestrated capillaries and absence of a blood-brain barrier (BBB), play a crucial role in controlling substance exchange between the brain and the blood. To date, adaptive changes in fenestrated vasculature in response to environmental insults remain poorly understood. In this study, we show that fenestrated capillaries in the median eminence (ME) and area postrema (AP)-two distinct circumventricular organs critical for metabolic control-undergo differential remodeling when exposed to circulating monosodium glutamate (MSG), a BBB-impermeable neurotoxin. Upon MSG exposure, fenestrated capillaries and vascular permeability were decreased in the ME but increased in the AP, and these changes were closely associated with the expression of angiogenic factors pleiotrophin (Ptn) and vascular endothelial growth factor A (Vegfa). In both ME and AP, adult tanycytes expressed high levels of Ptn and have processes in close contact with fenestrated capillaries. Significantly, the adaptive regulation of Ptn expression and the ability to modulate fenestrated capillaries and vascular permeability were abolished in both ME and AP of aged animals. Together, our findings suggest that tanycytic expressions of the angiogenic factor PTN, in conjunction with VEGF, are differentially regulated in distinct circumventricular organs upon exposure to neurotoxins, leading to region-specific remodeling of fenestrated endothelium. Our study further demonstrates that the loss of plasticity in fenestrated vasculature may be a hallmark feature of brain aging.
期刊介绍:
Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.