Christian V Storm, Stefano Racioppi, Matthew J Duff, James D McHardy, Eva Zurek, Malcolm I McMahon
{"title":"透明致密钠中间隙电子密度的实验特征。","authors":"Christian V Storm, Stefano Racioppi, Matthew J Duff, James D McHardy, Eva Zurek, Malcolm I McMahon","doi":"10.1038/s43246-025-00925-w","DOIUrl":null,"url":null,"abstract":"<p><p>The transparent <i>hP</i>4 phase of dense sodium (Na), stable above 200 GPa, has been computed to be an electride in which valence electrons are localised on interstitial lattice sites within the structure. However, there is no experimental evidence for this interstitial electron localisation in Na, or indeed in other high-density electride phases. Using static compression and single-crystal X-ray diffraction techniques, we have grown and studied a single-crystal sample of Na in the <i>hP</i>4 phase at 223 GPa. Using atomic form factors for <i>hP</i>4-Na derived from quantum crystallography techniques, we present experimental results to support the electride nature of this phase.</p>","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":"6 1","pages":"201"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental signatures of interstitial electron density in transparent dense sodium.\",\"authors\":\"Christian V Storm, Stefano Racioppi, Matthew J Duff, James D McHardy, Eva Zurek, Malcolm I McMahon\",\"doi\":\"10.1038/s43246-025-00925-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The transparent <i>hP</i>4 phase of dense sodium (Na), stable above 200 GPa, has been computed to be an electride in which valence electrons are localised on interstitial lattice sites within the structure. However, there is no experimental evidence for this interstitial electron localisation in Na, or indeed in other high-density electride phases. Using static compression and single-crystal X-ray diffraction techniques, we have grown and studied a single-crystal sample of Na in the <i>hP</i>4 phase at 223 GPa. Using atomic form factors for <i>hP</i>4-Na derived from quantum crystallography techniques, we present experimental results to support the electride nature of this phase.</p>\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\"6 1\",\"pages\":\"201\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12401722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43246-025-00925-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/9/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43246-025-00925-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental signatures of interstitial electron density in transparent dense sodium.
The transparent hP4 phase of dense sodium (Na), stable above 200 GPa, has been computed to be an electride in which valence electrons are localised on interstitial lattice sites within the structure. However, there is no experimental evidence for this interstitial electron localisation in Na, or indeed in other high-density electride phases. Using static compression and single-crystal X-ray diffraction techniques, we have grown and studied a single-crystal sample of Na in the hP4 phase at 223 GPa. Using atomic form factors for hP4-Na derived from quantum crystallography techniques, we present experimental results to support the electride nature of this phase.
期刊介绍:
Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.