Ashish Jain, Neha Dhir, Amit Raj Sharma, Anupam Raja, Praisy K Prabha, Alka Bhatia, Bikash Medhi, Ajay Prakash
{"title":"丙戊酸引发Wistar大鼠自闭症模型中性别无关的自闭症样缺陷、肠-脑轴和神经退行性改变。","authors":"Ashish Jain, Neha Dhir, Amit Raj Sharma, Anupam Raja, Praisy K Prabha, Alka Bhatia, Bikash Medhi, Ajay Prakash","doi":"10.1097/FBP.0000000000000839","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, restricted interests, and repetitive behaviors. Its higher prevalence in males underscores the importance of understanding potential sex-specific differences. Prenatal exposure to valproic acid (VPA) is a widely used preclinical model to induce ASD-like traits in rodents; however, few studies have systematically compared neurobehavioral outcomes in both sexes. Here, we aimed to investigate sex-specific variations in developmental, behavioral, and physiological parameters in Wistar rat offspring prenatally exposed to VPA. Pregnant rats received a single intraperitoneal injection of VPA (600 mg/kg) or saline on gestational day (GD) 12.5, and offspring were assigned to four groups: control males, control females, VPA males, and females (n = 9 per group). VPA-exposed rats of both sexes exhibited autism-like behaviors, including heightened anxiety, increased exploratory activity, repetitive behaviors, social deficits, spatial and recognition memory impairments, and depressive-like traits. Physiological assessments revealed altered gastrointestinal (GIT) motility, increased brain edema, impaired blood-brain barrier (BBB) function, and neuronal injury with no sex-based difference in estrogen β (ERβ/ESR2) mRNA expression. These findings demonstrate that in utero exposure to VPA induces autism-like behaviors, developmental abnormalities, and neurodegenerative changes in both rat sexes, emphasizing the importance of including females in preclinical ASD research.</p>","PeriodicalId":8832,"journal":{"name":"Behavioural Pharmacology","volume":"36 7","pages":"454-470"},"PeriodicalIF":1.6000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Valproic acid triggers a sex-independent autism-like deficits, gut-brain axis, and neurodegenerative changes in the autism model of Wistar rats.\",\"authors\":\"Ashish Jain, Neha Dhir, Amit Raj Sharma, Anupam Raja, Praisy K Prabha, Alka Bhatia, Bikash Medhi, Ajay Prakash\",\"doi\":\"10.1097/FBP.0000000000000839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, restricted interests, and repetitive behaviors. Its higher prevalence in males underscores the importance of understanding potential sex-specific differences. Prenatal exposure to valproic acid (VPA) is a widely used preclinical model to induce ASD-like traits in rodents; however, few studies have systematically compared neurobehavioral outcomes in both sexes. Here, we aimed to investigate sex-specific variations in developmental, behavioral, and physiological parameters in Wistar rat offspring prenatally exposed to VPA. Pregnant rats received a single intraperitoneal injection of VPA (600 mg/kg) or saline on gestational day (GD) 12.5, and offspring were assigned to four groups: control males, control females, VPA males, and females (n = 9 per group). VPA-exposed rats of both sexes exhibited autism-like behaviors, including heightened anxiety, increased exploratory activity, repetitive behaviors, social deficits, spatial and recognition memory impairments, and depressive-like traits. Physiological assessments revealed altered gastrointestinal (GIT) motility, increased brain edema, impaired blood-brain barrier (BBB) function, and neuronal injury with no sex-based difference in estrogen β (ERβ/ESR2) mRNA expression. These findings demonstrate that in utero exposure to VPA induces autism-like behaviors, developmental abnormalities, and neurodegenerative changes in both rat sexes, emphasizing the importance of including females in preclinical ASD research.</p>\",\"PeriodicalId\":8832,\"journal\":{\"name\":\"Behavioural Pharmacology\",\"volume\":\"36 7\",\"pages\":\"454-470\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Pharmacology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1097/FBP.0000000000000839\",\"RegionNum\":4,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Pharmacology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1097/FBP.0000000000000839","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Valproic acid triggers a sex-independent autism-like deficits, gut-brain axis, and neurodegenerative changes in the autism model of Wistar rats.
Autism spectrum disorder (ASD) is a complex neurodevelopmental condition characterized by deficits in social interaction, communication, restricted interests, and repetitive behaviors. Its higher prevalence in males underscores the importance of understanding potential sex-specific differences. Prenatal exposure to valproic acid (VPA) is a widely used preclinical model to induce ASD-like traits in rodents; however, few studies have systematically compared neurobehavioral outcomes in both sexes. Here, we aimed to investigate sex-specific variations in developmental, behavioral, and physiological parameters in Wistar rat offspring prenatally exposed to VPA. Pregnant rats received a single intraperitoneal injection of VPA (600 mg/kg) or saline on gestational day (GD) 12.5, and offspring were assigned to four groups: control males, control females, VPA males, and females (n = 9 per group). VPA-exposed rats of both sexes exhibited autism-like behaviors, including heightened anxiety, increased exploratory activity, repetitive behaviors, social deficits, spatial and recognition memory impairments, and depressive-like traits. Physiological assessments revealed altered gastrointestinal (GIT) motility, increased brain edema, impaired blood-brain barrier (BBB) function, and neuronal injury with no sex-based difference in estrogen β (ERβ/ESR2) mRNA expression. These findings demonstrate that in utero exposure to VPA induces autism-like behaviors, developmental abnormalities, and neurodegenerative changes in both rat sexes, emphasizing the importance of including females in preclinical ASD research.
期刊介绍:
Behavioural Pharmacology accepts original full and short research reports in diverse areas ranging from ethopharmacology to the pharmacology of schedule-controlled operant behaviour, provided that their primary focus is behavioural. Suitable topics include drug, chemical and hormonal effects on behaviour, the neurochemical mechanisms under-lying behaviour, and behavioural methods for the study of drug action. Both animal and human studies are welcome; however, studies reporting neurochemical data should have a predominantly behavioural focus, and human studies should not consist exclusively of clinical trials or case reports. Preference is given to studies that demonstrate and develop the potential of behavioural methods, and to papers reporting findings of direct relevance to clinical problems. Papers making a significant theoretical contribution are particularly welcome and, where possible and merited, space is made available for authors to explore fully the theoretical implications of their findings. Reviews of an area of the literature or at an appropriate stage in the development of an author’s own work are welcome. Commentaries in areas of current interest are also considered for publication, as are Reviews and Commentaries in areas outside behavioural pharmacology, but of importance and interest to behavioural pharmacologists. Behavioural Pharmacology publishes frequent Special Issues on current hot topics. The editors welcome correspondence about whether a paper in preparation might be suitable for inclusion in a Special Issue.