针对2型糖尿病的新型SHP-2抑制剂的计算见解和活性评估。

IF 3.8 2区 化学 Q2 CHEMISTRY, APPLIED
Rong Liu, Liang Zou, Maoqi Wang, Yueyue He, Mao Shu
{"title":"针对2型糖尿病的新型SHP-2抑制剂的计算见解和活性评估。","authors":"Rong Liu, Liang Zou, Maoqi Wang, Yueyue He, Mao Shu","doi":"10.1007/s11030-025-11344-x","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-tyrosine phosphatase-2 (SHP-2) has become a new target in the study of type 2 diabetes mellitus (T2DM). Currently, there are no marketed drugs targeting SHP-2 to study T2DM caused by insulin resistance. Therefore, this study screened out SHP-2 inhibitors with potential inhibitory activity from 2 million compounds, combined with ADME/T, Lipinski &Veber rules, molecular docking and molecular dynamics simulation. It is understood that the mechanism of action to inhibit the activity of SHP-2 protein by compounds is mainly protein amino acid residues PHE-113, GLU-250, LEU-254, GLN-257, PRO-491, and GLN-495 bind to ligands to produce stable conformation. Finally, a series of in vitro preliminary evaluation experiments were conducted to verify the primary activity of the lead compounds. It provides a meaningful reference for the future study of SHP-2 inhibitors with better efficacy, safety, drug-like, bioavailability and drug resistance.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational insights and activity evaluation of novel SHP-2 inhibitors for targeting type 2 diabetes mellitus.\",\"authors\":\"Rong Liu, Liang Zou, Maoqi Wang, Yueyue He, Mao Shu\",\"doi\":\"10.1007/s11030-025-11344-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein-tyrosine phosphatase-2 (SHP-2) has become a new target in the study of type 2 diabetes mellitus (T2DM). Currently, there are no marketed drugs targeting SHP-2 to study T2DM caused by insulin resistance. Therefore, this study screened out SHP-2 inhibitors with potential inhibitory activity from 2 million compounds, combined with ADME/T, Lipinski &Veber rules, molecular docking and molecular dynamics simulation. It is understood that the mechanism of action to inhibit the activity of SHP-2 protein by compounds is mainly protein amino acid residues PHE-113, GLU-250, LEU-254, GLN-257, PRO-491, and GLN-495 bind to ligands to produce stable conformation. Finally, a series of in vitro preliminary evaluation experiments were conducted to verify the primary activity of the lead compounds. It provides a meaningful reference for the future study of SHP-2 inhibitors with better efficacy, safety, drug-like, bioavailability and drug resistance.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-025-11344-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-025-11344-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

蛋白酪氨酸磷酸酶-2 (Protein-tyrosine phosphatase-2, SHP-2)已成为2型糖尿病(T2DM)研究的新靶点。目前市场上还没有针对SHP-2的药物来研究胰岛素抵抗引起的T2DM。因此,本研究结合ADME/T、Lipinski &Veber规则、分子对接和分子动力学模拟,从200万种化合物中筛选出具有潜在抑制活性的SHP-2抑制剂。据了解,化合物抑制SHP-2蛋白活性的作用机制主要是蛋白质氨基酸残基PHE-113、GLU-250、LEU-254、GLN-257、PRO-491和GLN-495与配体结合产生稳定构象。最后,进行了一系列体外初步评价实验,验证了先导化合物的一级活性。为今后研究具有更好疗效、安全性、类药性、生物利用度和耐药性的SHP-2抑制剂提供了有意义的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational insights and activity evaluation of novel SHP-2 inhibitors for targeting type 2 diabetes mellitus.

Protein-tyrosine phosphatase-2 (SHP-2) has become a new target in the study of type 2 diabetes mellitus (T2DM). Currently, there are no marketed drugs targeting SHP-2 to study T2DM caused by insulin resistance. Therefore, this study screened out SHP-2 inhibitors with potential inhibitory activity from 2 million compounds, combined with ADME/T, Lipinski &Veber rules, molecular docking and molecular dynamics simulation. It is understood that the mechanism of action to inhibit the activity of SHP-2 protein by compounds is mainly protein amino acid residues PHE-113, GLU-250, LEU-254, GLN-257, PRO-491, and GLN-495 bind to ligands to produce stable conformation. Finally, a series of in vitro preliminary evaluation experiments were conducted to verify the primary activity of the lead compounds. It provides a meaningful reference for the future study of SHP-2 inhibitors with better efficacy, safety, drug-like, bioavailability and drug resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信