{"title":"肠道微生物在宿主嘌呤稳态中的核心作用。","authors":"Heather L Emery, Robert L Kerby, Federico E Rey","doi":"10.1146/annurev-micro-041522-100126","DOIUrl":null,"url":null,"abstract":"<p><p>Purines are ubiquitous metabolites that play evolutionarily conserved roles, including as precursors to molecules central to life. Purine synthesis is metabolically and energetically expensive; thus, under physiological conditions, intermediates of purine degradation are efficiently reused through salvage pathways. Excess purines are oxidized and eliminated via the kidneys and intestine. The efficient elimination of excess purines in humans is critical because the primary waste product of purine metabolism, uric acid, is proinflammatory and has been linked to multiple health conditions. Recent studies suggest that gut bacteria influence the purine pool locally and systemically. Bacteria can break down uric acid and other purines aerobically and anaerobically and may regulate their homeostasis. In this article, we provide an overview of purines and their metabolism, and we discuss our current understanding of the complex purine-dependent cross talk and cross-feeding between the host and the gut microbiome.</p>","PeriodicalId":7946,"journal":{"name":"Annual review of microbiology","volume":" ","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Central Role of Gut Microbes in Host Purine Homeostasis.\",\"authors\":\"Heather L Emery, Robert L Kerby, Federico E Rey\",\"doi\":\"10.1146/annurev-micro-041522-100126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Purines are ubiquitous metabolites that play evolutionarily conserved roles, including as precursors to molecules central to life. Purine synthesis is metabolically and energetically expensive; thus, under physiological conditions, intermediates of purine degradation are efficiently reused through salvage pathways. Excess purines are oxidized and eliminated via the kidneys and intestine. The efficient elimination of excess purines in humans is critical because the primary waste product of purine metabolism, uric acid, is proinflammatory and has been linked to multiple health conditions. Recent studies suggest that gut bacteria influence the purine pool locally and systemically. Bacteria can break down uric acid and other purines aerobically and anaerobically and may regulate their homeostasis. In this article, we provide an overview of purines and their metabolism, and we discuss our current understanding of the complex purine-dependent cross talk and cross-feeding between the host and the gut microbiome.</p>\",\"PeriodicalId\":7946,\"journal\":{\"name\":\"Annual review of microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2025-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-micro-041522-100126\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-micro-041522-100126","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
The Central Role of Gut Microbes in Host Purine Homeostasis.
Purines are ubiquitous metabolites that play evolutionarily conserved roles, including as precursors to molecules central to life. Purine synthesis is metabolically and energetically expensive; thus, under physiological conditions, intermediates of purine degradation are efficiently reused through salvage pathways. Excess purines are oxidized and eliminated via the kidneys and intestine. The efficient elimination of excess purines in humans is critical because the primary waste product of purine metabolism, uric acid, is proinflammatory and has been linked to multiple health conditions. Recent studies suggest that gut bacteria influence the purine pool locally and systemically. Bacteria can break down uric acid and other purines aerobically and anaerobically and may regulate their homeostasis. In this article, we provide an overview of purines and their metabolism, and we discuss our current understanding of the complex purine-dependent cross talk and cross-feeding between the host and the gut microbiome.
期刊介绍:
Annual Review of Microbiology is a Medical and Microbiology Journal and published by Annual Reviews Inc. The Annual Review of Microbiology, in publication since 1947, covers significant developments in the field of microbiology, encompassing bacteria, archaea, viruses, and unicellular eukaryotes. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license. The Impact Factor of Annual Review of Microbiology is 10.242 (2024) Impact factor. The Annual Review of Microbiology Journal is Indexed with Pubmed, Scopus, UGC (University Grants Commission).