{"title":"溶胶-凝胶处理尖晶石HTL结合两亲性聚合物中间层用于稳定和可扩展的锡-钙钛矿太阳能组件。","authors":"Yin-Fai Wang, Wun-Yu Chen, Chien-Hung Chiang, Chun-Guey Wu","doi":"10.1002/smtd.202501127","DOIUrl":null,"url":null,"abstract":"<p><p>A new, readily accessible inorganic hole transporting material (HTM), Cu<sup>2+</sup> doped SnCo<sub>2</sub>O<sub>4</sub> (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu<sup>2+</sup> doped SnCo<sub>2</sub>O<sub>4</sub> HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.4%. In contrast, the conversion efficiencies of TPSMs based on Cu-SCO HTL without interface passivation or using conventional PEDOT:PSS HTL are 8.69% and 7.99%, respectively. A large-area, high-quality Cu-SCO film is fabricated using a simple and scalable sol-gel method, enabling favorable transparency and hole mobility. The amphiphilic PTSN comprises a hydrophobic iso-propyltriphenylamine (i-Pr-TPA) unit that contributes to hole transport, and a hydrophilic cyclopentadithiophene derivative bearing alkylamine side chains (CPDT-A), which assists hole extraction and transport to the Cu-SCO layer. The amine nitrogen and thiophene sulfur in PTSN can coordinate with metal ions in both TPsk and Cu-SCO, while the π-electrons from its aromatic backbone can further interact with Cu-SCO, as evidenced by IR and XPS spectroscopy. Functionally, PTSN serves as a co-HTL, interfacial cross-linker, and defect passivator for both the HTL and the perovskite absorber. Additional advantages of PTSN include its neutral character-eliminating ion migration issues-dense film formation due to the D-A copolymer structure, and strong substrate adhesion enabled by multiple anchoring groups. Moreover, its amphiphilic nature facilitates the formation of uniform, high-quality perovskite films via solution processing. This study highlights a promising strategy that combines the sol-gel process with a molecularly engineered interfacial layer, paving the way for utilizing a wide range of solution-processable inorganic HTLs in large-area tin-based perovskite photovoltaic devices with good efficiency and stability.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01127"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sol-Gel Processed Spinel HTL Combined with an Amphiphilic Polymer Interlayer for Stable and Scalable Tin-perovskite Solar Modules.\",\"authors\":\"Yin-Fai Wang, Wun-Yu Chen, Chien-Hung Chiang, Chun-Guey Wu\",\"doi\":\"10.1002/smtd.202501127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A new, readily accessible inorganic hole transporting material (HTM), Cu<sup>2+</sup> doped SnCo<sub>2</sub>O<sub>4</sub> (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu<sup>2+</sup> doped SnCo<sub>2</sub>O<sub>4</sub> HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.4%. In contrast, the conversion efficiencies of TPSMs based on Cu-SCO HTL without interface passivation or using conventional PEDOT:PSS HTL are 8.69% and 7.99%, respectively. A large-area, high-quality Cu-SCO film is fabricated using a simple and scalable sol-gel method, enabling favorable transparency and hole mobility. The amphiphilic PTSN comprises a hydrophobic iso-propyltriphenylamine (i-Pr-TPA) unit that contributes to hole transport, and a hydrophilic cyclopentadithiophene derivative bearing alkylamine side chains (CPDT-A), which assists hole extraction and transport to the Cu-SCO layer. The amine nitrogen and thiophene sulfur in PTSN can coordinate with metal ions in both TPsk and Cu-SCO, while the π-electrons from its aromatic backbone can further interact with Cu-SCO, as evidenced by IR and XPS spectroscopy. Functionally, PTSN serves as a co-HTL, interfacial cross-linker, and defect passivator for both the HTL and the perovskite absorber. Additional advantages of PTSN include its neutral character-eliminating ion migration issues-dense film formation due to the D-A copolymer structure, and strong substrate adhesion enabled by multiple anchoring groups. Moreover, its amphiphilic nature facilitates the formation of uniform, high-quality perovskite films via solution processing. This study highlights a promising strategy that combines the sol-gel process with a molecularly engineered interfacial layer, paving the way for utilizing a wide range of solution-processable inorganic HTLs in large-area tin-based perovskite photovoltaic devices with good efficiency and stability.</p>\",\"PeriodicalId\":229,\"journal\":{\"name\":\"Small Methods\",\"volume\":\" \",\"pages\":\"e01127\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small Methods\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/smtd.202501127\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501127","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A Sol-Gel Processed Spinel HTL Combined with an Amphiphilic Polymer Interlayer for Stable and Scalable Tin-perovskite Solar Modules.
A new, readily accessible inorganic hole transporting material (HTM), Cu2+ doped SnCo2O4 (Cu-SCO), is developed for inverted tin-perovskite solar modules (TPSMs). To overcome the intrinsic defect of inorganic solid-state material Cu-SCO and potential interfacial incompatibility with TPsk, an amphiphilic neutral donor-acceptor copolymer (PTSN) is rationally designed as a surface/interface modification agent. TPSMs based on Cu2+ doped SnCo2O4 HTLs integrated with PTSN surface/interface modification achieved the highest conversion efficiency of 10.4%. In contrast, the conversion efficiencies of TPSMs based on Cu-SCO HTL without interface passivation or using conventional PEDOT:PSS HTL are 8.69% and 7.99%, respectively. A large-area, high-quality Cu-SCO film is fabricated using a simple and scalable sol-gel method, enabling favorable transparency and hole mobility. The amphiphilic PTSN comprises a hydrophobic iso-propyltriphenylamine (i-Pr-TPA) unit that contributes to hole transport, and a hydrophilic cyclopentadithiophene derivative bearing alkylamine side chains (CPDT-A), which assists hole extraction and transport to the Cu-SCO layer. The amine nitrogen and thiophene sulfur in PTSN can coordinate with metal ions in both TPsk and Cu-SCO, while the π-electrons from its aromatic backbone can further interact with Cu-SCO, as evidenced by IR and XPS spectroscopy. Functionally, PTSN serves as a co-HTL, interfacial cross-linker, and defect passivator for both the HTL and the perovskite absorber. Additional advantages of PTSN include its neutral character-eliminating ion migration issues-dense film formation due to the D-A copolymer structure, and strong substrate adhesion enabled by multiple anchoring groups. Moreover, its amphiphilic nature facilitates the formation of uniform, high-quality perovskite films via solution processing. This study highlights a promising strategy that combines the sol-gel process with a molecularly engineered interfacial layer, paving the way for utilizing a wide range of solution-processable inorganic HTLs in large-area tin-based perovskite photovoltaic devices with good efficiency and stability.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.