{"title":"多功能MEMS, NEMS,由压电和铁电效应实现的微/纳米结构。","authors":"Mengyao Xiao, Aolei Xu, Zhouli Sui, Wenjie Zhang, Huajun Liu, Chengkuo Lee","doi":"10.1039/d5nh00386e","DOIUrl":null,"url":null,"abstract":"<p><p>MEMS and NEMS increasingly integrate multiple functions within compact platforms, enabled by piezoelectric and ferroelectric materials such as PZT, BaTiO<sub>3</sub>, AlN, ScAlN, PVDF, and Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>. These materials support devices including mechanical sensors, RF resonators for gas detection, energy harvesters, non-volatile memories such as FeRAM and FeFETs, and neuromorphic computing arrays, as well as microspeakers and microphones for compact audio interfaces. They also play a key role in reconfigurable photonic components through acousto-optic and electro-optic modulation. This review examines materials, device designs, and integration strategies shaping next-generation intelligent microsystems across domains such as Artificial Intelligence of Things (AIoT), wearables, and robotics.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifunctional MEMS, NEMS, micro/nano-structures enabled by piezoelectric and ferroelectric effects.\",\"authors\":\"Mengyao Xiao, Aolei Xu, Zhouli Sui, Wenjie Zhang, Huajun Liu, Chengkuo Lee\",\"doi\":\"10.1039/d5nh00386e\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>MEMS and NEMS increasingly integrate multiple functions within compact platforms, enabled by piezoelectric and ferroelectric materials such as PZT, BaTiO<sub>3</sub>, AlN, ScAlN, PVDF, and Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub>. These materials support devices including mechanical sensors, RF resonators for gas detection, energy harvesters, non-volatile memories such as FeRAM and FeFETs, and neuromorphic computing arrays, as well as microspeakers and microphones for compact audio interfaces. They also play a key role in reconfigurable photonic components through acousto-optic and electro-optic modulation. This review examines materials, device designs, and integration strategies shaping next-generation intelligent microsystems across domains such as Artificial Intelligence of Things (AIoT), wearables, and robotics.</p>\",\"PeriodicalId\":93,\"journal\":{\"name\":\"Nanoscale Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5nh00386e\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5nh00386e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Multifunctional MEMS, NEMS, micro/nano-structures enabled by piezoelectric and ferroelectric effects.
MEMS and NEMS increasingly integrate multiple functions within compact platforms, enabled by piezoelectric and ferroelectric materials such as PZT, BaTiO3, AlN, ScAlN, PVDF, and Hf0.5Zr0.5O2. These materials support devices including mechanical sensors, RF resonators for gas detection, energy harvesters, non-volatile memories such as FeRAM and FeFETs, and neuromorphic computing arrays, as well as microspeakers and microphones for compact audio interfaces. They also play a key role in reconfigurable photonic components through acousto-optic and electro-optic modulation. This review examines materials, device designs, and integration strategies shaping next-generation intelligent microsystems across domains such as Artificial Intelligence of Things (AIoT), wearables, and robotics.
期刊介绍:
Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.