{"title":"天冬酰胺酶和自噬抑制剂通过协同限制天冬酰胺供应有效去除衰老细胞。","authors":"Zhihua Huang, Xinxin Liu, Xiaojia Zhou, Keyu Chen, Honglin Diao, Mingyue Wang, Jianlei Wei, Zeping Li, Yang Yang, Zebin Mao, Wenhua Yu","doi":"10.1111/acel.70203","DOIUrl":null,"url":null,"abstract":"<p>The accumulation of senescent cells (SNCs) contributes to tissue dysfunction and age-related diseases, creating an urgent need for effective senolytic strategies. We identified a metabolic vulnerability in SNCs characterized by marked downregulation of asparagine synthetase (ASNS), rendering them uniquely dependent on exogenous asparagine (Asn). This vulnerability was exploited through combined treatment with L-asparaginase (ASNase) and autophagy inhibitors, which synergistically deplete Asn via complementary mechanisms: ASNase degrades extracellular Asn pools, while autophagy inhibition blocks intracellular protein recycling as an alternative Asn source. This dual approach induced selective synthetic lethality across multiple SNC types in vitro. In aged mice, the combination therapy significantly reduced SNC burden in diverse tissues, improved physiological function, and attenuated progression of age-related conditions including osteoporosis, atherosclerosis, and non-alcoholic fatty liver disease. Our findings establish concurrent targeting of extracellular and intracellular Asn supplies as a potent, selective senolytic strategy with broad therapeutic potential for age-related disorders.</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 10","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.70203","citationCount":"0","resultStr":"{\"title\":\"Asparaginase and Autophagy Inhibitors Effectively Remove Senescent Cells by Synergistically Limiting Asparagine Supply\",\"authors\":\"Zhihua Huang, Xinxin Liu, Xiaojia Zhou, Keyu Chen, Honglin Diao, Mingyue Wang, Jianlei Wei, Zeping Li, Yang Yang, Zebin Mao, Wenhua Yu\",\"doi\":\"10.1111/acel.70203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The accumulation of senescent cells (SNCs) contributes to tissue dysfunction and age-related diseases, creating an urgent need for effective senolytic strategies. We identified a metabolic vulnerability in SNCs characterized by marked downregulation of asparagine synthetase (ASNS), rendering them uniquely dependent on exogenous asparagine (Asn). This vulnerability was exploited through combined treatment with L-asparaginase (ASNase) and autophagy inhibitors, which synergistically deplete Asn via complementary mechanisms: ASNase degrades extracellular Asn pools, while autophagy inhibition blocks intracellular protein recycling as an alternative Asn source. This dual approach induced selective synthetic lethality across multiple SNC types in vitro. In aged mice, the combination therapy significantly reduced SNC burden in diverse tissues, improved physiological function, and attenuated progression of age-related conditions including osteoporosis, atherosclerosis, and non-alcoholic fatty liver disease. Our findings establish concurrent targeting of extracellular and intracellular Asn supplies as a potent, selective senolytic strategy with broad therapeutic potential for age-related disorders.</p>\",\"PeriodicalId\":55543,\"journal\":{\"name\":\"Aging Cell\",\"volume\":\"24 10\",\"pages\":\"\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.70203\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aging Cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/acel.70203\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.70203","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Asparaginase and Autophagy Inhibitors Effectively Remove Senescent Cells by Synergistically Limiting Asparagine Supply
The accumulation of senescent cells (SNCs) contributes to tissue dysfunction and age-related diseases, creating an urgent need for effective senolytic strategies. We identified a metabolic vulnerability in SNCs characterized by marked downregulation of asparagine synthetase (ASNS), rendering them uniquely dependent on exogenous asparagine (Asn). This vulnerability was exploited through combined treatment with L-asparaginase (ASNase) and autophagy inhibitors, which synergistically deplete Asn via complementary mechanisms: ASNase degrades extracellular Asn pools, while autophagy inhibition blocks intracellular protein recycling as an alternative Asn source. This dual approach induced selective synthetic lethality across multiple SNC types in vitro. In aged mice, the combination therapy significantly reduced SNC burden in diverse tissues, improved physiological function, and attenuated progression of age-related conditions including osteoporosis, atherosclerosis, and non-alcoholic fatty liver disease. Our findings establish concurrent targeting of extracellular and intracellular Asn supplies as a potent, selective senolytic strategy with broad therapeutic potential for age-related disorders.
期刊介绍:
Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.