化学应变法探测锌离子电池中MnO2循环稳定性。

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-09-04 DOI:10.1002/cssc.202501270
Shasha Chen, Xiaoying Long, Faysal Md, Kailong Hu, Kaikai Li
{"title":"化学应变法探测锌离子电池中MnO2循环稳定性。","authors":"Shasha Chen, Xiaoying Long, Faysal Md, Kailong Hu, Kaikai Li","doi":"10.1002/cssc.202501270","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanical degradation of cathodes during charge-discharge cycling poses a critical limitation to the cycle life of aqueous zinc-ion batteries (AZIBs). Although the degradation of MnO<sub>2</sub> cathodes has been extensively investigated, the underlying reaction mechanisms have long remained a subject of debate, and the associated mechanical evolution during cycling is still poorly understood. In this work, a comprehensive investigation of electrochemical phase transitions and chemical strain evolution in δ-MnO<sub>2</sub> cathode is presented using a custom-built in situ strain testing system based on digital image correlation. The results reveal that the discharge-charge mechanism of δ-MnO<sub>2</sub> proceeds through initial cointercalation of H<sup>+</sup> and Zn<sup>2+</sup> causing elastic deformation, followed by phase transformation to ZnMn<sub>2</sub>O<sub>4</sub>. During charging, this phase transformation coupled with ZnMn<sub>3</sub>O<sub>7</sub> formation induces irreversible plastic deformation, generating substantial residual strain and cathode volume expansion. Increasing current density can effectively reduce residual strain by suppressing phase transformation, thereby enhancing electrode cycling stability.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202501270"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing MnO<sub>2</sub> Cycling Stability in Aqueous Zinc-Ion Batteries using Chemical Strain Analysis.\",\"authors\":\"Shasha Chen, Xiaoying Long, Faysal Md, Kailong Hu, Kaikai Li\",\"doi\":\"10.1002/cssc.202501270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The mechanical degradation of cathodes during charge-discharge cycling poses a critical limitation to the cycle life of aqueous zinc-ion batteries (AZIBs). Although the degradation of MnO<sub>2</sub> cathodes has been extensively investigated, the underlying reaction mechanisms have long remained a subject of debate, and the associated mechanical evolution during cycling is still poorly understood. In this work, a comprehensive investigation of electrochemical phase transitions and chemical strain evolution in δ-MnO<sub>2</sub> cathode is presented using a custom-built in situ strain testing system based on digital image correlation. The results reveal that the discharge-charge mechanism of δ-MnO<sub>2</sub> proceeds through initial cointercalation of H<sup>+</sup> and Zn<sup>2+</sup> causing elastic deformation, followed by phase transformation to ZnMn<sub>2</sub>O<sub>4</sub>. During charging, this phase transformation coupled with ZnMn<sub>3</sub>O<sub>7</sub> formation induces irreversible plastic deformation, generating substantial residual strain and cathode volume expansion. Increasing current density can effectively reduce residual strain by suppressing phase transformation, thereby enhancing electrode cycling stability.</p>\",\"PeriodicalId\":149,\"journal\":{\"name\":\"ChemSusChem\",\"volume\":\" \",\"pages\":\"e202501270\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemSusChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/cssc.202501270\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501270","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在充放电循环过程中,阴极的机械退化是制约水性锌离子电池循环寿命的重要因素。虽然二氧化锰阴极的降解已经被广泛研究,但潜在的反应机制长期以来一直是争论的主题,并且在循环过程中相关的机械演化仍然知之甚少。在这项工作中,利用基于数字图像相关的定制原位应变测试系统,对δ-MnO2阴极的电化学相变和化学应变演化进行了全面的研究。结果表明:δ-MnO2的放电-电荷机制是通过H+和Zn2+的初始共插层引起弹性变形,然后相变为ZnMn2O4;在充电过程中,这种相变加上ZnMn3O7的形成引起了不可逆的塑性变形,产生了大量的残余应变和阴极体积膨胀。增大电流密度可以通过抑制相变有效降低残余应变,从而提高电极循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing MnO2 Cycling Stability in Aqueous Zinc-Ion Batteries using Chemical Strain Analysis.

The mechanical degradation of cathodes during charge-discharge cycling poses a critical limitation to the cycle life of aqueous zinc-ion batteries (AZIBs). Although the degradation of MnO2 cathodes has been extensively investigated, the underlying reaction mechanisms have long remained a subject of debate, and the associated mechanical evolution during cycling is still poorly understood. In this work, a comprehensive investigation of electrochemical phase transitions and chemical strain evolution in δ-MnO2 cathode is presented using a custom-built in situ strain testing system based on digital image correlation. The results reveal that the discharge-charge mechanism of δ-MnO2 proceeds through initial cointercalation of H+ and Zn2+ causing elastic deformation, followed by phase transformation to ZnMn2O4. During charging, this phase transformation coupled with ZnMn3O7 formation induces irreversible plastic deformation, generating substantial residual strain and cathode volume expansion. Increasing current density can effectively reduce residual strain by suppressing phase transformation, thereby enhancing electrode cycling stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信