Burak Kolukisa, Fatma Çelebi, Nihal Ersu, Kemal Selçuk Yücel, Emin Murat Canger
{"title":"提高全景放射成像的诊断质量:图像恢复GAN模型的比较评价","authors":"Burak Kolukisa, Fatma Çelebi, Nihal Ersu, Kemal Selçuk Yücel, Emin Murat Canger","doi":"10.1002/cpe.70289","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Panoramic imaging is a widely utilized technique to capture a comprehensive view of the maxillary and mandibular dental arches and supporting facial structures. This study evaluates the potential of the Generative Adversarial Network (GAN) models—Pix2Pix, CycleGAN, and RegGAN—in enhancing diagnostic quality by addressing combinations of common image distortions. A panoramic radiograph data set was processed to simulate four types of distortions: (i) blurriness, (ii) noise, (iii) combined blurriness and noise, and (iv) anterior-region-specific blurriness. Three GAN models were trained and analyzed using quantitative metrics such as the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). In addition, two oral and maxillofacial radiologists conducted qualitative reviews to assess the diagnostic reliability of the generated images. Pix2Pix consistently outperformed CycleGAN and RegGAN, achieving the highest PSNR and SSIM values across all types of distortions. Expert evaluations also favored Pix2Pix, highlighting its ability to restore image accuracy and enhance clinical utility. CycleGAN showed moderate improvements in noise-affected images but struggled with combined distortions, while RegGAN yielded negligible enhancements. These findings underscore its potential for clinical application in refining radiographic imaging. Future research should focus on combining GAN techniques and utilizing larger datasets to develop universally robust image enhancement models.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"37 23-24","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Diagnostic Quality in Panoramic Radiography: A Comparative Evaluation of GAN Models for Image Restoration\",\"authors\":\"Burak Kolukisa, Fatma Çelebi, Nihal Ersu, Kemal Selçuk Yücel, Emin Murat Canger\",\"doi\":\"10.1002/cpe.70289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Panoramic imaging is a widely utilized technique to capture a comprehensive view of the maxillary and mandibular dental arches and supporting facial structures. This study evaluates the potential of the Generative Adversarial Network (GAN) models—Pix2Pix, CycleGAN, and RegGAN—in enhancing diagnostic quality by addressing combinations of common image distortions. A panoramic radiograph data set was processed to simulate four types of distortions: (i) blurriness, (ii) noise, (iii) combined blurriness and noise, and (iv) anterior-region-specific blurriness. Three GAN models were trained and analyzed using quantitative metrics such as the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). In addition, two oral and maxillofacial radiologists conducted qualitative reviews to assess the diagnostic reliability of the generated images. Pix2Pix consistently outperformed CycleGAN and RegGAN, achieving the highest PSNR and SSIM values across all types of distortions. Expert evaluations also favored Pix2Pix, highlighting its ability to restore image accuracy and enhance clinical utility. CycleGAN showed moderate improvements in noise-affected images but struggled with combined distortions, while RegGAN yielded negligible enhancements. These findings underscore its potential for clinical application in refining radiographic imaging. Future research should focus on combining GAN techniques and utilizing larger datasets to develop universally robust image enhancement models.</p>\\n </div>\",\"PeriodicalId\":55214,\"journal\":{\"name\":\"Concurrency and Computation-Practice & Experience\",\"volume\":\"37 23-24\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concurrency and Computation-Practice & Experience\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70289\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.70289","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Enhancing Diagnostic Quality in Panoramic Radiography: A Comparative Evaluation of GAN Models for Image Restoration
Panoramic imaging is a widely utilized technique to capture a comprehensive view of the maxillary and mandibular dental arches and supporting facial structures. This study evaluates the potential of the Generative Adversarial Network (GAN) models—Pix2Pix, CycleGAN, and RegGAN—in enhancing diagnostic quality by addressing combinations of common image distortions. A panoramic radiograph data set was processed to simulate four types of distortions: (i) blurriness, (ii) noise, (iii) combined blurriness and noise, and (iv) anterior-region-specific blurriness. Three GAN models were trained and analyzed using quantitative metrics such as the peak signal-to-noise ratio (PSNR) and the structural similarity index measure (SSIM). In addition, two oral and maxillofacial radiologists conducted qualitative reviews to assess the diagnostic reliability of the generated images. Pix2Pix consistently outperformed CycleGAN and RegGAN, achieving the highest PSNR and SSIM values across all types of distortions. Expert evaluations also favored Pix2Pix, highlighting its ability to restore image accuracy and enhance clinical utility. CycleGAN showed moderate improvements in noise-affected images but struggled with combined distortions, while RegGAN yielded negligible enhancements. These findings underscore its potential for clinical application in refining radiographic imaging. Future research should focus on combining GAN techniques and utilizing larger datasets to develop universally robust image enhancement models.
期刊介绍:
Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of:
Parallel and distributed computing;
High-performance computing;
Computational and data science;
Artificial intelligence and machine learning;
Big data applications, algorithms, and systems;
Network science;
Ontologies and semantics;
Security and privacy;
Cloud/edge/fog computing;
Green computing; and
Quantum computing.