{"title":"压电纳米材料在催化中的应用进展:一种新兴的清洁技术","authors":"Zhenfeng Jing, Pinghui Ge, Haixia Zhang, Shuhui Sun, Sen Zhang, Xingfu Li, Hui Pang, Fengqing Zhang","doi":"10.1007/s41061-025-00527-7","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, nano-piezoelectric materials have demonstrated revolutionary potential in catalytic applications owing to their unique electromechanical coupling effects and mechanical-to-chemical energy conversion capabilities. Research focus has shifted from performance optimization of single materials to designing multi-scale band engineering and multi-field coupling mechanisms aimed at enhancing catalytic efficiency. The development of novel nano-piezoelectric cleaning materials has become a research hotspot, with various nontraditional piezoelectric materials being extended into organic degradation, biomedicine, and environmental remediation applications, accelerating the transition of piezocatalysis from laboratory research to practical implementation. This review summarizes recent advancements in piezoelectric nanomaterials for catalysis; briefly introduces the fundamental principles of piezocatalytic technology; highlights applications in organic matter degradation, antibacterial treatment, and heavy metal reduction; and concludes with discussions on current challenges and future development prospects. The article provides valuable references for both research and practical applications of nano-piezoelectric materials in piezocatalysis.</p><h3>Graphic Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":802,"journal":{"name":"Topics in Current Chemistry","volume":"383 3","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Progress in the Application of Piezoelectric Nanomaterials in Catalysis: An Emerging Clean Technology\",\"authors\":\"Zhenfeng Jing, Pinghui Ge, Haixia Zhang, Shuhui Sun, Sen Zhang, Xingfu Li, Hui Pang, Fengqing Zhang\",\"doi\":\"10.1007/s41061-025-00527-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, nano-piezoelectric materials have demonstrated revolutionary potential in catalytic applications owing to their unique electromechanical coupling effects and mechanical-to-chemical energy conversion capabilities. Research focus has shifted from performance optimization of single materials to designing multi-scale band engineering and multi-field coupling mechanisms aimed at enhancing catalytic efficiency. The development of novel nano-piezoelectric cleaning materials has become a research hotspot, with various nontraditional piezoelectric materials being extended into organic degradation, biomedicine, and environmental remediation applications, accelerating the transition of piezocatalysis from laboratory research to practical implementation. This review summarizes recent advancements in piezoelectric nanomaterials for catalysis; briefly introduces the fundamental principles of piezocatalytic technology; highlights applications in organic matter degradation, antibacterial treatment, and heavy metal reduction; and concludes with discussions on current challenges and future development prospects. The article provides valuable references for both research and practical applications of nano-piezoelectric materials in piezocatalysis.</p><h3>Graphic Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":802,\"journal\":{\"name\":\"Topics in Current Chemistry\",\"volume\":\"383 3\",\"pages\":\"\"},\"PeriodicalIF\":8.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Current Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41061-025-00527-7\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Current Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s41061-025-00527-7","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Chemistry","Score":null,"Total":0}
Progress in the Application of Piezoelectric Nanomaterials in Catalysis: An Emerging Clean Technology
In recent years, nano-piezoelectric materials have demonstrated revolutionary potential in catalytic applications owing to their unique electromechanical coupling effects and mechanical-to-chemical energy conversion capabilities. Research focus has shifted from performance optimization of single materials to designing multi-scale band engineering and multi-field coupling mechanisms aimed at enhancing catalytic efficiency. The development of novel nano-piezoelectric cleaning materials has become a research hotspot, with various nontraditional piezoelectric materials being extended into organic degradation, biomedicine, and environmental remediation applications, accelerating the transition of piezocatalysis from laboratory research to practical implementation. This review summarizes recent advancements in piezoelectric nanomaterials for catalysis; briefly introduces the fundamental principles of piezocatalytic technology; highlights applications in organic matter degradation, antibacterial treatment, and heavy metal reduction; and concludes with discussions on current challenges and future development prospects. The article provides valuable references for both research and practical applications of nano-piezoelectric materials in piezocatalysis.
期刊介绍:
Topics in Current Chemistry provides in-depth analyses and forward-thinking perspectives on the latest advancements in chemical research. This renowned journal encompasses various domains within chemical science and their intersections with biology, medicine, physics, and materials science.
Each collection within the journal aims to offer a comprehensive understanding, accessible to both academic and industrial readers, of emerging research in an area that captivates a broader scientific community.
In essence, Topics in Current Chemistry illuminates cutting-edge chemical research, fosters interdisciplinary collaboration, and facilitates knowledge-sharing among diverse scientific audiences.