{"title":"异质结(SiGe/Si)三金属双栅极扩展源隧道场效应管,改善了直流、噪声和线性性能","authors":"Sheetal Singh, Subodh Wairya","doi":"10.1007/s10470-025-02492-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a 2-D model of a hetero-triple metal dual gate extended source tunnel FET (TMDG-ES-TFET) is analyzed. The device features a heterojunction (HJ) designed by silicon germanium (SiGe) and Si materials in the source-channel junction and a hetero-dielectric gate stack (GS) using dielectric as silicon dioxide (SiO<sub>2</sub>) and hafnium dioxide (HfO<sub>2</sub>). In this research, the DC characteristics, linearity, and noise performance have been investigated. In structure the entire source region over the oxide layer has been overlapped by three distinct metals with various work functions. The paper has also investigated the impact of increasing source width (80 nm and 120 nm) over the channel. The SiGe is used as a source thereby improving the I<sub>ON</sub>/I<sub>OFF</sub> value and threshold voltage (V<sub>th</sub>). The structure has a greater I<sub>ON</sub>/I<sub>OFF</sub> reflected as 9.1 × 10<sup>12</sup>, a lower sub-threshold value of 41 mV/decade, and a lower V<sub>th</sub> of 0.58 V. A standardized SILVACO technology computer aided design (TCAD) is used for the simulation. Additionally, the linearity analysis was performed as a figure of merit (FOM) for a device under investigation, taking into account various parameters like 1db compression point, 2nd and 3rd -order voltage intercept points (VIP<sub>2</sub> and VIP<sub>3</sub>), the 3rd -order intermodulation distortion point (IMD<sub>3</sub>), and the third order intermodulation intercept point (IIP<sub>3</sub>).</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"125 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heterojunction (SiGe/Si) triple metal dual gate extended source tunnel FET for improved DC, noise and linearity performance\",\"authors\":\"Sheetal Singh, Subodh Wairya\",\"doi\":\"10.1007/s10470-025-02492-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, a 2-D model of a hetero-triple metal dual gate extended source tunnel FET (TMDG-ES-TFET) is analyzed. The device features a heterojunction (HJ) designed by silicon germanium (SiGe) and Si materials in the source-channel junction and a hetero-dielectric gate stack (GS) using dielectric as silicon dioxide (SiO<sub>2</sub>) and hafnium dioxide (HfO<sub>2</sub>). In this research, the DC characteristics, linearity, and noise performance have been investigated. In structure the entire source region over the oxide layer has been overlapped by three distinct metals with various work functions. The paper has also investigated the impact of increasing source width (80 nm and 120 nm) over the channel. The SiGe is used as a source thereby improving the I<sub>ON</sub>/I<sub>OFF</sub> value and threshold voltage (V<sub>th</sub>). The structure has a greater I<sub>ON</sub>/I<sub>OFF</sub> reflected as 9.1 × 10<sup>12</sup>, a lower sub-threshold value of 41 mV/decade, and a lower V<sub>th</sub> of 0.58 V. A standardized SILVACO technology computer aided design (TCAD) is used for the simulation. Additionally, the linearity analysis was performed as a figure of merit (FOM) for a device under investigation, taking into account various parameters like 1db compression point, 2nd and 3rd -order voltage intercept points (VIP<sub>2</sub> and VIP<sub>3</sub>), the 3rd -order intermodulation distortion point (IMD<sub>3</sub>), and the third order intermodulation intercept point (IIP<sub>3</sub>).</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"125 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02492-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02492-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Heterojunction (SiGe/Si) triple metal dual gate extended source tunnel FET for improved DC, noise and linearity performance
In this paper, a 2-D model of a hetero-triple metal dual gate extended source tunnel FET (TMDG-ES-TFET) is analyzed. The device features a heterojunction (HJ) designed by silicon germanium (SiGe) and Si materials in the source-channel junction and a hetero-dielectric gate stack (GS) using dielectric as silicon dioxide (SiO2) and hafnium dioxide (HfO2). In this research, the DC characteristics, linearity, and noise performance have been investigated. In structure the entire source region over the oxide layer has been overlapped by three distinct metals with various work functions. The paper has also investigated the impact of increasing source width (80 nm and 120 nm) over the channel. The SiGe is used as a source thereby improving the ION/IOFF value and threshold voltage (Vth). The structure has a greater ION/IOFF reflected as 9.1 × 1012, a lower sub-threshold value of 41 mV/decade, and a lower Vth of 0.58 V. A standardized SILVACO technology computer aided design (TCAD) is used for the simulation. Additionally, the linearity analysis was performed as a figure of merit (FOM) for a device under investigation, taking into account various parameters like 1db compression point, 2nd and 3rd -order voltage intercept points (VIP2 and VIP3), the 3rd -order intermodulation distortion point (IMD3), and the third order intermodulation intercept point (IIP3).
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.