富受体β-Ga2O3微带上多层MoS2片异质结的紫外促进表面增强拉曼光谱研究

IF 4.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Wenjing Jia, Yinzhou Yan, Yao Yao, Yijian Jiang
{"title":"富受体β-Ga2O3微带上多层MoS2片异质结的紫外促进表面增强拉曼光谱研究","authors":"Wenjing Jia,&nbsp;Yinzhou Yan,&nbsp;Yao Yao,&nbsp;Yijian Jiang","doi":"10.1186/s11671-025-04339-y","DOIUrl":null,"url":null,"abstract":"<div><p>Surface-enhanced Raman spectroscopy (SERS) by 2D semiconductors relies on chemical (CM) enhancement driven by charge-transfer (CT) processes in bandgap alignment between molecules and substrates. Unfortunately, the low light absorption and weak conferment in the atomic-layer material limit the enhancement factor of Raman intensity (<i>EFRI</i>). Improving the utilization efficiency of excitation light is therefore essential for promoting SERS performance of 2D semiconductors. Here we develop a heterojunction SERS substrate, composed of few-layer MoS<sub>2</sub> (FL-MoS<sub>2</sub>) flakes capping onto the acceptor-rich <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> microstrips grown by optical vapor supersaturated precipitation (OVSP). The acceptor-rich <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> microstrips excited by ultraviolet (UV) irradiation boost the CT processes between FL-MoS<sub>2</sub> and analyte molecules, by which the <i>EFRI</i> was increased by two orders of magnitude up to 9.33 × 10⁴ with the limit of detection (<i>LoD</i>) down to 10<sup>⁻9</sup> M for methylene blue (MB). The in-situ experiment unveils that the SERS improvement is originated from the photoinduced carries trapped by the deep acceptor of Ga<sup>2−</sup> vacancies (<span>\\(\\:{V}_{Ga}^{2-}\\)</span>) at 2.53 eV below conduction band minimum to facilitate the CT resonance. The present work provides new insights into the role of defect states in the chemical SERS mechanism, demonstrating the improvement of 2D-material substrate performance for ultrasensitive Raman detection.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"20 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-025-04339-y.pdf","citationCount":"0","resultStr":"{\"title\":\"UV-promoted surface-enhanced Raman spectroscopy via heterojunction of few-layer MoS2 flakes on acceptor-rich β-Ga2O3 microstrips\",\"authors\":\"Wenjing Jia,&nbsp;Yinzhou Yan,&nbsp;Yao Yao,&nbsp;Yijian Jiang\",\"doi\":\"10.1186/s11671-025-04339-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Surface-enhanced Raman spectroscopy (SERS) by 2D semiconductors relies on chemical (CM) enhancement driven by charge-transfer (CT) processes in bandgap alignment between molecules and substrates. Unfortunately, the low light absorption and weak conferment in the atomic-layer material limit the enhancement factor of Raman intensity (<i>EFRI</i>). Improving the utilization efficiency of excitation light is therefore essential for promoting SERS performance of 2D semiconductors. Here we develop a heterojunction SERS substrate, composed of few-layer MoS<sub>2</sub> (FL-MoS<sub>2</sub>) flakes capping onto the acceptor-rich <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> microstrips grown by optical vapor supersaturated precipitation (OVSP). The acceptor-rich <i>β</i>-Ga<sub>2</sub>O<sub>3</sub> microstrips excited by ultraviolet (UV) irradiation boost the CT processes between FL-MoS<sub>2</sub> and analyte molecules, by which the <i>EFRI</i> was increased by two orders of magnitude up to 9.33 × 10⁴ with the limit of detection (<i>LoD</i>) down to 10<sup>⁻9</sup> M for methylene blue (MB). The in-situ experiment unveils that the SERS improvement is originated from the photoinduced carries trapped by the deep acceptor of Ga<sup>2−</sup> vacancies (<span>\\\\(\\\\:{V}_{Ga}^{2-}\\\\)</span>) at 2.53 eV below conduction band minimum to facilitate the CT resonance. The present work provides new insights into the role of defect states in the chemical SERS mechanism, demonstrating the improvement of 2D-material substrate performance for ultrasensitive Raman detection.</p></div>\",\"PeriodicalId\":51136,\"journal\":{\"name\":\"Nanoscale Research Letters\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s11671-025-04339-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Research Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s11671-025-04339-y\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-025-04339-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二维半导体的表面增强拉曼光谱(SERS)依赖于分子和衬底之间带隙排列中的电荷转移(CT)过程驱动的化学(CM)增强。然而,原子层材料的低光吸收和弱赋能限制了拉曼强度的增强因子。因此,提高激发光的利用效率对于提高二维半导体的SERS性能至关重要。在这里,我们开发了一种异质结SERS衬底,由几层MoS2 (FL-MoS2)薄片覆盖在通过光学蒸汽过饱和沉淀(OVSP)生长的富含受体的β-Ga2O3微带上组成。受紫外线(UV)照射激发的富含受体的β-Ga2O3微带促进了FL-MoS2和分析物分子之间的CT过程,由此EFRI增加了两个数量级,达到9.33 × 10⁴,亚甲基蓝(MB)的检测限(LoD)降至10⁻9 M。原位实验表明,SERS的改善源于Ga2−空位深度受体(\(\:{V}_{Ga}^{2-}\))在传导带最小值以下2.53 eV处捕获光诱导载流子,以促进CT共振。本研究为缺陷态在化学SERS机制中的作用提供了新的见解,证明了2d材料衬底性能在超灵敏拉曼检测中的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
UV-promoted surface-enhanced Raman spectroscopy via heterojunction of few-layer MoS2 flakes on acceptor-rich β-Ga2O3 microstrips

Surface-enhanced Raman spectroscopy (SERS) by 2D semiconductors relies on chemical (CM) enhancement driven by charge-transfer (CT) processes in bandgap alignment between molecules and substrates. Unfortunately, the low light absorption and weak conferment in the atomic-layer material limit the enhancement factor of Raman intensity (EFRI). Improving the utilization efficiency of excitation light is therefore essential for promoting SERS performance of 2D semiconductors. Here we develop a heterojunction SERS substrate, composed of few-layer MoS2 (FL-MoS2) flakes capping onto the acceptor-rich β-Ga2O3 microstrips grown by optical vapor supersaturated precipitation (OVSP). The acceptor-rich β-Ga2O3 microstrips excited by ultraviolet (UV) irradiation boost the CT processes between FL-MoS2 and analyte molecules, by which the EFRI was increased by two orders of magnitude up to 9.33 × 10⁴ with the limit of detection (LoD) down to 10⁻9 M for methylene blue (MB). The in-situ experiment unveils that the SERS improvement is originated from the photoinduced carries trapped by the deep acceptor of Ga2− vacancies (\(\:{V}_{Ga}^{2-}\)) at 2.53 eV below conduction band minimum to facilitate the CT resonance. The present work provides new insights into the role of defect states in the chemical SERS mechanism, demonstrating the improvement of 2D-material substrate performance for ultrasensitive Raman detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信