{"title":"利用H2S通过协同C-N位点将氢和硫原子经济地插入碳氮三键†","authors":"Ganchang Lei, Jiayin Wang, Xinhui Liu, Shiping Wang, Shijing Liang, Lijuan Shen, Yingying Zhan and Lilong Jiang","doi":"10.1039/D5EY00110B","DOIUrl":null,"url":null,"abstract":"<p >Developing efficient strategies that convert industrial waste hydrogen sulfide (H<small><sub>2</sub></small>S) into value-added products is meaningful for both applied environmental science and industrial chemistry. Here we report a series of heterogeneous N-doped carbon catalysts with synergistic C–N sites that enable the nucleophilic addition of H<small><sub>2</sub></small>S into aromatic nitrile compounds (PhCN) under mild conditions to produce thiobenzamide (PhCSNH<small><sub>2</sub></small>). The as-designed C–N sites achieve a high thioamide production rate of 26 400 μmol<small><sub>PhCSNH<small><sub>2</sub></small></sub></small> L<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and a notable selectivity of <em>ca.</em> 80% at 60 °C within a short 2-hour timeframe. Additionally, the catalyst exhibits easy recyclability and maintains high stability over ten cycles during a 6-month period. Systematic microscopic and <em>in situ</em> spectroscopic characterization, combined with theoretical calculations, reveal that C-pyridinic N coordination sites effectively lower the adsorption energy barrier of the crucial intermediate *PhCSHNH, offering a dynamically favorable pathway for PhCSNH<small><sub>2</sub></small> production. Furthermore, the protocol demonstrates excellent compatibility with various substituted substrates, providing access to a diverse range of thioamides.</p>","PeriodicalId":72877,"journal":{"name":"EES catalysis","volume":" 5","pages":" 1106-1116"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00110b?page=search","citationCount":"0","resultStr":"{\"title\":\"Atom-economical insertion of hydrogen and sulfur into carbon–nitrogen triple bonds using H2S via synergistic C–N sites†\",\"authors\":\"Ganchang Lei, Jiayin Wang, Xinhui Liu, Shiping Wang, Shijing Liang, Lijuan Shen, Yingying Zhan and Lilong Jiang\",\"doi\":\"10.1039/D5EY00110B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Developing efficient strategies that convert industrial waste hydrogen sulfide (H<small><sub>2</sub></small>S) into value-added products is meaningful for both applied environmental science and industrial chemistry. Here we report a series of heterogeneous N-doped carbon catalysts with synergistic C–N sites that enable the nucleophilic addition of H<small><sub>2</sub></small>S into aromatic nitrile compounds (PhCN) under mild conditions to produce thiobenzamide (PhCSNH<small><sub>2</sub></small>). The as-designed C–N sites achieve a high thioamide production rate of 26 400 μmol<small><sub>PhCSNH<small><sub>2</sub></small></sub></small> L<small><sup>−1</sup></small> h<small><sup>−1</sup></small> and a notable selectivity of <em>ca.</em> 80% at 60 °C within a short 2-hour timeframe. Additionally, the catalyst exhibits easy recyclability and maintains high stability over ten cycles during a 6-month period. Systematic microscopic and <em>in situ</em> spectroscopic characterization, combined with theoretical calculations, reveal that C-pyridinic N coordination sites effectively lower the adsorption energy barrier of the crucial intermediate *PhCSHNH, offering a dynamically favorable pathway for PhCSNH<small><sub>2</sub></small> production. Furthermore, the protocol demonstrates excellent compatibility with various substituted substrates, providing access to a diverse range of thioamides.</p>\",\"PeriodicalId\":72877,\"journal\":{\"name\":\"EES catalysis\",\"volume\":\" 5\",\"pages\":\" 1106-1116\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ey/d5ey00110b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EES catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00110b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EES catalysis","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ey/d5ey00110b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Atom-economical insertion of hydrogen and sulfur into carbon–nitrogen triple bonds using H2S via synergistic C–N sites†
Developing efficient strategies that convert industrial waste hydrogen sulfide (H2S) into value-added products is meaningful for both applied environmental science and industrial chemistry. Here we report a series of heterogeneous N-doped carbon catalysts with synergistic C–N sites that enable the nucleophilic addition of H2S into aromatic nitrile compounds (PhCN) under mild conditions to produce thiobenzamide (PhCSNH2). The as-designed C–N sites achieve a high thioamide production rate of 26 400 μmolPhCSNH2 L−1 h−1 and a notable selectivity of ca. 80% at 60 °C within a short 2-hour timeframe. Additionally, the catalyst exhibits easy recyclability and maintains high stability over ten cycles during a 6-month period. Systematic microscopic and in situ spectroscopic characterization, combined with theoretical calculations, reveal that C-pyridinic N coordination sites effectively lower the adsorption energy barrier of the crucial intermediate *PhCSHNH, offering a dynamically favorable pathway for PhCSNH2 production. Furthermore, the protocol demonstrates excellent compatibility with various substituted substrates, providing access to a diverse range of thioamides.