基于深度强化学习的工业确定性计算和网络资源调度

IF 3 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Bosong Huang;Weiting Zhang;Ruibin Guo;Nian Tang;Wenhao Ye;Jian Jin
{"title":"基于深度强化学习的工业确定性计算和网络资源调度","authors":"Bosong Huang;Weiting Zhang;Ruibin Guo;Nian Tang;Wenhao Ye;Jian Jin","doi":"10.23919/cje.2024.00.014","DOIUrl":null,"url":null,"abstract":"In this paper, a dueling double deep Q network (D3QN)-based resource scheduling algorithm is proposed for industrial Internet of things (IoT) to achieve the flexible adaptation of network resources. In the considered network scenario, the time-sensitive networking (TSN)-fifth generation (TSN-5G) network architecture, primarily composed of TSN switches and 5G base stations, is designed accordingly. Simulation results show that when network resources are limited, the D3QN-based resource scheduling algorithm can significantly improve the efficiency of task allocation, making it an ideal solution for reducing latency and optimizing resource utilization in industrial IoT.","PeriodicalId":50701,"journal":{"name":"Chinese Journal of Electronics","volume":"34 4","pages":"1275-1283"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11151185","citationCount":"0","resultStr":"{\"title\":\"Industrial Deterministic Computation and Networking Resource Scheduling via Deep Reinforcement Learning\",\"authors\":\"Bosong Huang;Weiting Zhang;Ruibin Guo;Nian Tang;Wenhao Ye;Jian Jin\",\"doi\":\"10.23919/cje.2024.00.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a dueling double deep Q network (D3QN)-based resource scheduling algorithm is proposed for industrial Internet of things (IoT) to achieve the flexible adaptation of network resources. In the considered network scenario, the time-sensitive networking (TSN)-fifth generation (TSN-5G) network architecture, primarily composed of TSN switches and 5G base stations, is designed accordingly. Simulation results show that when network resources are limited, the D3QN-based resource scheduling algorithm can significantly improve the efficiency of task allocation, making it an ideal solution for reducing latency and optimizing resource utilization in industrial IoT.\",\"PeriodicalId\":50701,\"journal\":{\"name\":\"Chinese Journal of Electronics\",\"volume\":\"34 4\",\"pages\":\"1275-1283\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11151185\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Electronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11151185/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electronics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11151185/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于双深Q网络(D3QN)的工业物联网资源调度算法,以实现网络资源的灵活适配。在考虑的网络场景中,设计了以TSN交换机和5G基站为主要组成部分的TSN-5G网络架构。仿真结果表明,在网络资源有限的情况下,基于d3qn的资源调度算法可以显著提高任务分配效率,是工业物联网中降低时延、优化资源利用的理想解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Industrial Deterministic Computation and Networking Resource Scheduling via Deep Reinforcement Learning
In this paper, a dueling double deep Q network (D3QN)-based resource scheduling algorithm is proposed for industrial Internet of things (IoT) to achieve the flexible adaptation of network resources. In the considered network scenario, the time-sensitive networking (TSN)-fifth generation (TSN-5G) network architecture, primarily composed of TSN switches and 5G base stations, is designed accordingly. Simulation results show that when network resources are limited, the D3QN-based resource scheduling algorithm can significantly improve the efficiency of task allocation, making it an ideal solution for reducing latency and optimizing resource utilization in industrial IoT.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Electronics
Chinese Journal of Electronics 工程技术-工程:电子与电气
CiteScore
3.70
自引率
16.70%
发文量
342
审稿时长
12.0 months
期刊介绍: CJE focuses on the emerging fields of electronics, publishing innovative and transformative research papers. Most of the papers published in CJE are from universities and research institutes, presenting their innovative research results. Both theoretical and practical contributions are encouraged, and original research papers reporting novel solutions to the hot topics in electronics are strongly recommended.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信