Antonio J. Diosdado-Aragón , José Miguel Dávila , Manuel A. Caraballo
{"title":"MgCO3/MgO工业渣碱活化尾矿的化学稳定性及环境特性","authors":"Antonio J. Diosdado-Aragón , José Miguel Dávila , Manuel A. Caraballo","doi":"10.1016/j.gexplo.2025.107886","DOIUrl":null,"url":null,"abstract":"<div><div>Mining tailings are commonly combined with ordinary Portland cement (OPC) and water to form a paste used for mine gallery backfilling (MGBF). Although OPC remains the most frequent choice, alternative alkaline reagents such as Mg(OH)<sub>2</sub> are being investigated due to several limitations: its high cost, a significant carbon footprint associated with its production, and limited long-term durability, especially because of its vulnerability to sulfate attack. This study examines how the use of a MgCO<sub>3</sub>/MgO industrial residue affects the environmental behavior of alkali-activated pastes in a wide range of mine tailings (MTs), considering the results obtained from different tests: ABA test, leaching test according to UNE 12457-4 and uniaxial compressive strength (UCS) tests. Various paste formulations were generated using different MgCO<sub>3</sub>/MgO concentrations and six very different types of MTs spanning a wide range mineralogical, chemical and acid potential characteristic. As a main conclusion, all alkali-activated pastes, when compared with the original MTs, showed a very important improvement of their environmental behavior, marked by a consistent reduction of their acid generation potential, a water quality improvement of their leachates and their new consideration of inert wastes according to the European regulation for waste acceptance at landfills. While dynamic long-term leaching experiments and reactive transport geochemical models are advisable to better understand the behavior of these type of mine residues under real conditions and in the long term (decades to centuries); the present study shows how the combined application of ABA and UNE 12457-4 tests can offers a reliable initial environmental characterization of alkali-activated mine pastes.</div></div>","PeriodicalId":16336,"journal":{"name":"Journal of Geochemical Exploration","volume":"280 ","pages":"Article 107886"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical stability and environmental characterization of alkali-activated mine tailings generated using a MgCO3/MgO industrial residue\",\"authors\":\"Antonio J. Diosdado-Aragón , José Miguel Dávila , Manuel A. Caraballo\",\"doi\":\"10.1016/j.gexplo.2025.107886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mining tailings are commonly combined with ordinary Portland cement (OPC) and water to form a paste used for mine gallery backfilling (MGBF). Although OPC remains the most frequent choice, alternative alkaline reagents such as Mg(OH)<sub>2</sub> are being investigated due to several limitations: its high cost, a significant carbon footprint associated with its production, and limited long-term durability, especially because of its vulnerability to sulfate attack. This study examines how the use of a MgCO<sub>3</sub>/MgO industrial residue affects the environmental behavior of alkali-activated pastes in a wide range of mine tailings (MTs), considering the results obtained from different tests: ABA test, leaching test according to UNE 12457-4 and uniaxial compressive strength (UCS) tests. Various paste formulations were generated using different MgCO<sub>3</sub>/MgO concentrations and six very different types of MTs spanning a wide range mineralogical, chemical and acid potential characteristic. As a main conclusion, all alkali-activated pastes, when compared with the original MTs, showed a very important improvement of their environmental behavior, marked by a consistent reduction of their acid generation potential, a water quality improvement of their leachates and their new consideration of inert wastes according to the European regulation for waste acceptance at landfills. While dynamic long-term leaching experiments and reactive transport geochemical models are advisable to better understand the behavior of these type of mine residues under real conditions and in the long term (decades to centuries); the present study shows how the combined application of ABA and UNE 12457-4 tests can offers a reliable initial environmental characterization of alkali-activated mine pastes.</div></div>\",\"PeriodicalId\":16336,\"journal\":{\"name\":\"Journal of Geochemical Exploration\",\"volume\":\"280 \",\"pages\":\"Article 107886\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geochemical Exploration\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375674225002183\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geochemical Exploration","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375674225002183","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Chemical stability and environmental characterization of alkali-activated mine tailings generated using a MgCO3/MgO industrial residue
Mining tailings are commonly combined with ordinary Portland cement (OPC) and water to form a paste used for mine gallery backfilling (MGBF). Although OPC remains the most frequent choice, alternative alkaline reagents such as Mg(OH)2 are being investigated due to several limitations: its high cost, a significant carbon footprint associated with its production, and limited long-term durability, especially because of its vulnerability to sulfate attack. This study examines how the use of a MgCO3/MgO industrial residue affects the environmental behavior of alkali-activated pastes in a wide range of mine tailings (MTs), considering the results obtained from different tests: ABA test, leaching test according to UNE 12457-4 and uniaxial compressive strength (UCS) tests. Various paste formulations were generated using different MgCO3/MgO concentrations and six very different types of MTs spanning a wide range mineralogical, chemical and acid potential characteristic. As a main conclusion, all alkali-activated pastes, when compared with the original MTs, showed a very important improvement of their environmental behavior, marked by a consistent reduction of their acid generation potential, a water quality improvement of their leachates and their new consideration of inert wastes according to the European regulation for waste acceptance at landfills. While dynamic long-term leaching experiments and reactive transport geochemical models are advisable to better understand the behavior of these type of mine residues under real conditions and in the long term (decades to centuries); the present study shows how the combined application of ABA and UNE 12457-4 tests can offers a reliable initial environmental characterization of alkali-activated mine pastes.
期刊介绍:
Journal of Geochemical Exploration is mostly dedicated to publication of original studies in exploration and environmental geochemistry and related topics.
Contributions considered of prevalent interest for the journal include researches based on the application of innovative methods to:
define the genesis and the evolution of mineral deposits including transfer of elements in large-scale mineralized areas.
analyze complex systems at the boundaries between bio-geochemistry, metal transport and mineral accumulation.
evaluate effects of historical mining activities on the surface environment.
trace pollutant sources and define their fate and transport models in the near-surface and surface environments involving solid, fluid and aerial matrices.
assess and quantify natural and technogenic radioactivity in the environment.
determine geochemical anomalies and set baseline reference values using compositional data analysis, multivariate statistics and geo-spatial analysis.
assess the impacts of anthropogenic contamination on ecosystems and human health at local and regional scale to prioritize and classify risks through deterministic and stochastic approaches.
Papers dedicated to the presentation of newly developed methods in analytical geochemistry to be applied in the field or in laboratory are also within the topics of interest for the journal.