用于地中海叶绿素- A和水文场联合预测的物理信息深度神经网络

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Michela Sammartino , Lorenzo Della Cioppa , Simone Colella , Bruno Buongiorno Nardelli
{"title":"用于地中海叶绿素- A和水文场联合预测的物理信息深度神经网络","authors":"Michela Sammartino ,&nbsp;Lorenzo Della Cioppa ,&nbsp;Simone Colella ,&nbsp;Bruno Buongiorno Nardelli","doi":"10.1016/j.envsoft.2025.106660","DOIUrl":null,"url":null,"abstract":"<div><div>Monitoring the ocean's four-dimensional state is essential for marine ecosystem preservation. Artificial Intelligence (AI) algorithms represent promising tools to merge satellite and in situ measurements, improving reconstructions of ocean interior dynamics. Here, we describe 4DMED-bionet, an AI-based model developed under the European Space Agency 4DMED-Sea project, designed to infer subsurface properties from surface observations. Combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, the model reconstructs 4D fields of temperature, salinity, density and chlorophyll-a in the Mediterranean Sea. The algorithm includes a physics-informed loss function that imposes constraints on density predictions, improving its accuracy without degrading other outputs. 4DMED-bionet outperforms different deep learning models, providing a high-quality 4D dataset, available at <span><span>https://doi.org/10.25423/CMCC/4DMEDSEA_BIOPHYS_REP_3D</span><svg><path></path></svg></span>. This dataset includes 4D geostrophic velocities derived from reconstructed physical tracers and surface geostrophic currents. Scientific analysis of 4D data is ongoing, aiming to better understand the processes that couple phytoplankton responses with 3D physical dynamic.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"194 ","pages":"Article 106660"},"PeriodicalIF":4.6000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Physics-informed deep neural network for the joint prediction of chlorophyll-a and hydrographic fields in the Mediterranean Sea\",\"authors\":\"Michela Sammartino ,&nbsp;Lorenzo Della Cioppa ,&nbsp;Simone Colella ,&nbsp;Bruno Buongiorno Nardelli\",\"doi\":\"10.1016/j.envsoft.2025.106660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Monitoring the ocean's four-dimensional state is essential for marine ecosystem preservation. Artificial Intelligence (AI) algorithms represent promising tools to merge satellite and in situ measurements, improving reconstructions of ocean interior dynamics. Here, we describe 4DMED-bionet, an AI-based model developed under the European Space Agency 4DMED-Sea project, designed to infer subsurface properties from surface observations. Combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, the model reconstructs 4D fields of temperature, salinity, density and chlorophyll-a in the Mediterranean Sea. The algorithm includes a physics-informed loss function that imposes constraints on density predictions, improving its accuracy without degrading other outputs. 4DMED-bionet outperforms different deep learning models, providing a high-quality 4D dataset, available at <span><span>https://doi.org/10.25423/CMCC/4DMEDSEA_BIOPHYS_REP_3D</span><svg><path></path></svg></span>. This dataset includes 4D geostrophic velocities derived from reconstructed physical tracers and surface geostrophic currents. Scientific analysis of 4D data is ongoing, aiming to better understand the processes that couple phytoplankton responses with 3D physical dynamic.</div></div>\",\"PeriodicalId\":310,\"journal\":{\"name\":\"Environmental Modelling & Software\",\"volume\":\"194 \",\"pages\":\"Article 106660\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Modelling & Software\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364815225003445\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003445","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

监测海洋的四维状态对海洋生态系统的保护至关重要。人工智能(AI)算法代表了合并卫星和现场测量的有前途的工具,改善了海洋内部动力学的重建。在这里,我们描述了4DMED-bionet,这是一个基于人工智能的模型,由欧洲航天局4DMED-Sea项目开发,旨在从地表观测推断地下属性。该模型结合卷积神经网络(CNN)和长短期记忆(LSTM)层,重建了地中海温度、盐度、密度和叶绿素-a的4D场。该算法包括一个物理信息损失函数,它对密度预测施加约束,在不降低其他输出的情况下提高其准确性。4DMED-bionet优于不同的深度学习模型,提供高质量的4D数据集,可在https://doi.org/10.25423/CMCC/4DMEDSEA_BIOPHYS_REP_3D上获得。该数据集包括由重建的物理示踪剂和地表地转流导出的四维地转速度。对4D数据的科学分析正在进行中,旨在更好地理解浮游植物响应与3D物理动态耦合的过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Physics-informed deep neural network for the joint prediction of chlorophyll-a and hydrographic fields in the Mediterranean Sea

A Physics-informed deep neural network for the joint prediction of chlorophyll-a and hydrographic fields in the Mediterranean Sea
Monitoring the ocean's four-dimensional state is essential for marine ecosystem preservation. Artificial Intelligence (AI) algorithms represent promising tools to merge satellite and in situ measurements, improving reconstructions of ocean interior dynamics. Here, we describe 4DMED-bionet, an AI-based model developed under the European Space Agency 4DMED-Sea project, designed to infer subsurface properties from surface observations. Combining Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) layers, the model reconstructs 4D fields of temperature, salinity, density and chlorophyll-a in the Mediterranean Sea. The algorithm includes a physics-informed loss function that imposes constraints on density predictions, improving its accuracy without degrading other outputs. 4DMED-bionet outperforms different deep learning models, providing a high-quality 4D dataset, available at https://doi.org/10.25423/CMCC/4DMEDSEA_BIOPHYS_REP_3D. This dataset includes 4D geostrophic velocities derived from reconstructed physical tracers and surface geostrophic currents. Scientific analysis of 4D data is ongoing, aiming to better understand the processes that couple phytoplankton responses with 3D physical dynamic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信