平衡锂硫电池催化活性和稳定性的策略

IF 5.7 3区 材料科学 Q2 Materials Science
Lin-kai PENG , Ji-wei SHI , Yun CAO , Jia-qi LAN , Chuan-nan GENG , Wei LV
{"title":"平衡锂硫电池催化活性和稳定性的策略","authors":"Lin-kai PENG ,&nbsp;Ji-wei SHI ,&nbsp;Yun CAO ,&nbsp;Jia-qi LAN ,&nbsp;Chuan-nan GENG ,&nbsp;Wei LV","doi":"10.1016/S1872-5805(25)61016-X","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g<sup>-1</sup>) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li<sub>2</sub>S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (152KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 889-908"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for balancing catalytic activity and stability in lithium-sulfur batteries\",\"authors\":\"Lin-kai PENG ,&nbsp;Ji-wei SHI ,&nbsp;Yun CAO ,&nbsp;Jia-qi LAN ,&nbsp;Chuan-nan GENG ,&nbsp;Wei LV\",\"doi\":\"10.1016/S1872-5805(25)61016-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g<sup>-1</sup>) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li<sub>2</sub>S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (152KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 4\",\"pages\":\"Pages 889-908\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258052561016X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258052561016X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

锂硫电池(li -硫电池)具有很高的理论比容量(1675毫安时g-1),通过化学转化用于电荷存储,因此在下一代储能设备中具有很大的前景。然而,它们的实际应用受到硫的缓慢氧化还原动力学和溶解的锂多硫化物(LiPSs)产生的“穿梭效应”的阻碍。近年来,各种碳基材料作为硫宿主和催化剂被用于加速硫转化氧化还原动力学和减轻硫离子穿梭。然而,它们经常遭受不可逆的钝化和结构变化,从而破坏其长期性能。我们考虑了限制其稳定性的主要问题,包括过量的LiPS吸附,Li2S绝缘钝化和表面重建,并阐明了这些因素是如何导致容量褪色的。然后,我们概述了实现长期硫催化的有效策略,重点关注功能碳,例如设计合适的碳支撑催化剂界面,创建分布良好的活性位点,添加助催化剂以改善电子转移,以及使用碳基保护层来抑制不必要的副反应。利用这些信息,可以开发出稳定、高活性的催化剂,能够在Li-S电池的实际条件下长期运行。下载:下载高分辨率图片(152KB)下载:下载全尺寸图片
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for balancing catalytic activity and stability in lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g-1) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li2S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
  1. Download: Download high-res image (152KB)
  2. Download: Download full-size image
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Carbon Materials
New Carbon Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
6.10
自引率
8.80%
发文量
3245
审稿时长
5.5 months
期刊介绍: New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信