Lin-kai PENG , Ji-wei SHI , Yun CAO , Jia-qi LAN , Chuan-nan GENG , Wei LV
{"title":"平衡锂硫电池催化活性和稳定性的策略","authors":"Lin-kai PENG , Ji-wei SHI , Yun CAO , Jia-qi LAN , Chuan-nan GENG , Wei LV","doi":"10.1016/S1872-5805(25)61016-X","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g<sup>-1</sup>) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li<sub>2</sub>S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (152KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 889-908"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for balancing catalytic activity and stability in lithium-sulfur batteries\",\"authors\":\"Lin-kai PENG , Ji-wei SHI , Yun CAO , Jia-qi LAN , Chuan-nan GENG , Wei LV\",\"doi\":\"10.1016/S1872-5805(25)61016-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g<sup>-1</sup>) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li<sub>2</sub>S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (152KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 4\",\"pages\":\"Pages 889-908\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S187258052561016X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S187258052561016X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Strategies for balancing catalytic activity and stability in lithium-sulfur batteries
Lithium-sulfur (Li-S) batteries have great promise for next-generation energy storage devices due to the high theoretical specific capacity (1675 mAh g-1) of sulfur with chemical conversion for charge storage. However, their practical use is hindered by the slow redox kinetics of sulfur and the “shuttle effect” arising from dissolved lithium polysulfides (LiPSs). In recent years, various carbon-based materials have served as sulfur hosts and catalysts for accelerating sulfur conversion redox kinetics and alleviating LiPS shuttling. However, they often suffer from irreversible passivation and structural changes that destroy their long-term performance. We consider the main problems limiting their stability, including excessive LiPS adsorption, passivation by insulating Li2S, and surface reconstruction, and clarify how these factors lead to capacity fade. We then outline effective strategies for achieving long-term sulfur catalysis, focusing on functional carbon, such as designing suitable carbon-supported catalyst interfaces, creating well-distributed active sites, adding cocatalysts to improve electron transfer, and using carbon-based protective layers to suppress unwanted side reactions. Using this information should enable the development of stable, high-activity catalysts capable of long-term operation under practical conditions in Li-S batteries.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.