Bin XIE , Xin-ya ZHAO , Zheng-dong MA , Yi-jian ZHANG , Jia-rong DONG , Yan WANG , Qiu-hong BAI , Ye-hua SHEN
{"title":"修饰生物质衍生多孔碳的孔隙结构,用于储能系统","authors":"Bin XIE , Xin-ya ZHAO , Zheng-dong MA , Yi-jian ZHANG , Jia-rong DONG , Yan WANG , Qiu-hong BAI , Ye-hua SHEN","doi":"10.1016/S1872-5805(25)61024-9","DOIUrl":null,"url":null,"abstract":"<div><div>The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure, environmental friendliness, and cost-effectiveness. Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed, emphasizing the critical role of a balanced distribution of micropores, mesopores and macropores in determining electrochemical behavior. Particular attention is given to how the intrinsic components of biomass precursors (lignin, cellulose, and hemicellulose) influence pore formation during carbonization. Carbonization and activation strategies to precisely control the pore structure are introduced. Finally, key challenges in the industrial production of these carbons are outlined, and future research directions are proposed. These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering, aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (91KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 870-887"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modifying the pore structure of biomass-derived porous carbon for use in energy storage systems\",\"authors\":\"Bin XIE , Xin-ya ZHAO , Zheng-dong MA , Yi-jian ZHANG , Jia-rong DONG , Yan WANG , Qiu-hong BAI , Ye-hua SHEN\",\"doi\":\"10.1016/S1872-5805(25)61024-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure, environmental friendliness, and cost-effectiveness. Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed, emphasizing the critical role of a balanced distribution of micropores, mesopores and macropores in determining electrochemical behavior. Particular attention is given to how the intrinsic components of biomass precursors (lignin, cellulose, and hemicellulose) influence pore formation during carbonization. Carbonization and activation strategies to precisely control the pore structure are introduced. Finally, key challenges in the industrial production of these carbons are outlined, and future research directions are proposed. These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering, aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (91KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 4\",\"pages\":\"Pages 870-887\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525610249\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610249","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Modifying the pore structure of biomass-derived porous carbon for use in energy storage systems
The development of sustainable electrode materials for energy storage systems has become very important and porous carbons derived from biomass have become an important candidate because of their tunable pore structure, environmental friendliness, and cost-effectiveness. Recent advances in controlling the pore structure of these carbons and its relationship between to is energy storage performance are discussed, emphasizing the critical role of a balanced distribution of micropores, mesopores and macropores in determining electrochemical behavior. Particular attention is given to how the intrinsic components of biomass precursors (lignin, cellulose, and hemicellulose) influence pore formation during carbonization. Carbonization and activation strategies to precisely control the pore structure are introduced. Finally, key challenges in the industrial production of these carbons are outlined, and future research directions are proposed. These include the establishment of a database of biomass intrinsic structures and machine learning-assisted pore structure engineering, aimed at providing guidance for the design of high-performance carbon materials for next-generation energy storage devices.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.