Jun-yi ZHOU , Hong-hui DU , Xue-tao WANG , Xin-ru CAO , Lin-jie ZHI
{"title":"智能电池用碳材料","authors":"Jun-yi ZHOU , Hong-hui DU , Xue-tao WANG , Xin-ru CAO , Lin-jie ZHI","doi":"10.1016/S1872-5805(25)61019-5","DOIUrl":null,"url":null,"abstract":"<div><div>Smart batteries play a key role in upgrading energy storage systems. However, they require a well-balanced integration of material structure, functional properties, and electrochemical performance, and their development is limited by conventional material systems in terms of energy density, response time, and functional integration. Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility. Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing, as well as chemical functionalization, and composite design are analyzed, and their impact on improving the specific capacity and cycling stability of batteries is demonstrated. The unique advantages of carbon materials in realizing smart functions such as power supply, real-time monitoring and energy management in smart batteries are also discussed. Based on current progress in related fields, the prospects for the use of carbon materials in smart batteries are evaluated.\n\t\t\t\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (129KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>","PeriodicalId":19719,"journal":{"name":"New Carbon Materials","volume":"40 4","pages":"Pages 822-836"},"PeriodicalIF":5.7000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon materials for smart batteries\",\"authors\":\"Jun-yi ZHOU , Hong-hui DU , Xue-tao WANG , Xin-ru CAO , Lin-jie ZHI\",\"doi\":\"10.1016/S1872-5805(25)61019-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Smart batteries play a key role in upgrading energy storage systems. However, they require a well-balanced integration of material structure, functional properties, and electrochemical performance, and their development is limited by conventional material systems in terms of energy density, response time, and functional integration. Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility. Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing, as well as chemical functionalization, and composite design are analyzed, and their impact on improving the specific capacity and cycling stability of batteries is demonstrated. The unique advantages of carbon materials in realizing smart functions such as power supply, real-time monitoring and energy management in smart batteries are also discussed. Based on current progress in related fields, the prospects for the use of carbon materials in smart batteries are evaluated.\\n\\t\\t\\t\\t<span><figure><span><img><ol><li><span><span>Download: <span>Download high-res image (129KB)</span></span></span></li><li><span><span>Download: <span>Download full-size image</span></span></span></li></ol></span></figure></span></div></div>\",\"PeriodicalId\":19719,\"journal\":{\"name\":\"New Carbon Materials\",\"volume\":\"40 4\",\"pages\":\"Pages 822-836\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Carbon Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872580525610195\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Carbon Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872580525610195","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Smart batteries play a key role in upgrading energy storage systems. However, they require a well-balanced integration of material structure, functional properties, and electrochemical performance, and their development is limited by conventional material systems in terms of energy density, response time, and functional integration. Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility. Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing, as well as chemical functionalization, and composite design are analyzed, and their impact on improving the specific capacity and cycling stability of batteries is demonstrated. The unique advantages of carbon materials in realizing smart functions such as power supply, real-time monitoring and energy management in smart batteries are also discussed. Based on current progress in related fields, the prospects for the use of carbon materials in smart batteries are evaluated.
期刊介绍:
New Carbon Materials is a scholarly journal that publishes original research papers focusing on the physics, chemistry, and technology of organic substances that serve as precursors for creating carbonaceous solids with aromatic or tetrahedral bonding. The scope of materials covered by the journal extends from diamond and graphite to a variety of forms including chars, semicokes, mesophase substances, carbons, carbon fibers, carbynes, fullerenes, and carbon nanotubes. The journal's objective is to showcase the latest research findings and advancements in the areas of formation, structure, properties, behaviors, and technological applications of carbon materials. Additionally, the journal includes papers on the secondary production of new carbon and composite materials, such as carbon-carbon composites, derived from the aforementioned carbons. Research papers on organic substances will be considered for publication only if they have a direct relevance to the resulting carbon materials.