递归神经网络用于分层时间序列预测:标准普尔500指数市场价值的应用

IF 3.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Jackson Ndoto Munyao , Lillian Achola Oluoch , Hasnain Iftikhar , Paulo Canas Rodrigues
{"title":"递归神经网络用于分层时间序列预测:标准普尔500指数市场价值的应用","authors":"Jackson Ndoto Munyao ,&nbsp;Lillian Achola Oluoch ,&nbsp;Hasnain Iftikhar ,&nbsp;Paulo Canas Rodrigues","doi":"10.1016/j.physa.2025.130869","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&amp;P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"678 ","pages":"Article 130869"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent neural networks for hierarchical time series forecasting: An application to the S&P 500 market value\",\"authors\":\"Jackson Ndoto Munyao ,&nbsp;Lillian Achola Oluoch ,&nbsp;Hasnain Iftikhar ,&nbsp;Paulo Canas Rodrigues\",\"doi\":\"10.1016/j.physa.2025.130869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&amp;P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"678 \",\"pages\":\"Article 130869\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005217\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005217","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了递归神经网络(rnn),特别是长短期记忆(LSTM)和门控递归单元(GRU)架构在金融市场分层时间序列预测中的应用。使用标准普尔500指数前70家公司的市场价值数据,我们评估了三个层次的预测:公司、行业和市场总量,并应用各种调节策略来确保一致性。将该框架与传统模型(自回归综合移动平均和指数平滑)在多种调节方法下进行了比较,包括带预测比例的Middle-Out。结果表明,基于rnn的模型在跨级别的准确性方面优于统计基准,特别是在与Middle-Out对账相结合时。我们还讨论了计算成本和实现权衡等实际方面,强调了深度学习方法与结构化财务预测任务的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recurrent neural networks for hierarchical time series forecasting: An application to the S&P 500 market value
This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信