Jackson Ndoto Munyao , Lillian Achola Oluoch , Hasnain Iftikhar , Paulo Canas Rodrigues
{"title":"递归神经网络用于分层时间序列预测:标准普尔500指数市场价值的应用","authors":"Jackson Ndoto Munyao , Lillian Achola Oluoch , Hasnain Iftikhar , Paulo Canas Rodrigues","doi":"10.1016/j.physa.2025.130869","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"678 ","pages":"Article 130869"},"PeriodicalIF":3.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recurrent neural networks for hierarchical time series forecasting: An application to the S&P 500 market value\",\"authors\":\"Jackson Ndoto Munyao , Lillian Achola Oluoch , Hasnain Iftikhar , Paulo Canas Rodrigues\",\"doi\":\"10.1016/j.physa.2025.130869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"678 \",\"pages\":\"Article 130869\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437125005217\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437125005217","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Recurrent neural networks for hierarchical time series forecasting: An application to the S&P 500 market value
This paper investigates the use of Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) architectures, for hierarchical time series forecasting in financial markets. Using market value data from the top 70 companies in the S&P 500 index, we evaluate forecasts across three hierarchical levels: company, sector, and market total, applying various reconciliation strategies to ensure coherence. The proposed framework is compared with traditional models (Autoregressive Integrated Moving Average and Exponential Smoothing) under multiple reconciliation methods, including Middle-Out with forecast proportions. Results show that RNN-based models outperform statistical benchmarks in terms of accuracy across levels, particularly when combined with Middle-Out reconciliation. We also discuss practical aspects such as computational cost and implementation trade-offs, highlighting the relevance of deep learning methods for structured financial forecasting tasks.
期刊介绍:
Physica A: Statistical Mechanics and its Applications
Recognized by the European Physical Society
Physica A publishes research in the field of statistical mechanics and its applications.
Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents.
Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.