{"title":"反高斯拉盖尔多项式:一些性质和一种新的插值方法","authors":"Luisa Fermo , Donatella Occorsio","doi":"10.1016/j.cam.2025.117034","DOIUrl":null,"url":null,"abstract":"<div><div>Anti-Gauss Laguerre quadrature formulas are based on the zeros of polynomials, we call them Anti-Gauss polynomials, defined in terms of Laguerre orthogonal polynomials. This paper establishes new properties of the Anti-Gauss Laguerre polynomials, and analyzes some “truncated” interpolation processes essentially based on their zeros. Estimates of the corresponding Lebesgue constants are proved, and error bounds in spaces of locally continuous functions, equipped with uniform weighted norms are given. Finally, some numerical tests are presented about the behavior of the Lebesgue functions and Lebesgue constants, and numerical experiments dealing with the approximation of functions having different smoothness are proposed. Comparisons with the results achieved by truncated Lagrange interpolation processes based on Laguerre zeros are shown.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"475 ","pages":"Article 117034"},"PeriodicalIF":2.6000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anti-Gauss Laguerre polynomials: Some properties and a new interpolation process\",\"authors\":\"Luisa Fermo , Donatella Occorsio\",\"doi\":\"10.1016/j.cam.2025.117034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Anti-Gauss Laguerre quadrature formulas are based on the zeros of polynomials, we call them Anti-Gauss polynomials, defined in terms of Laguerre orthogonal polynomials. This paper establishes new properties of the Anti-Gauss Laguerre polynomials, and analyzes some “truncated” interpolation processes essentially based on their zeros. Estimates of the corresponding Lebesgue constants are proved, and error bounds in spaces of locally continuous functions, equipped with uniform weighted norms are given. Finally, some numerical tests are presented about the behavior of the Lebesgue functions and Lebesgue constants, and numerical experiments dealing with the approximation of functions having different smoothness are proposed. Comparisons with the results achieved by truncated Lagrange interpolation processes based on Laguerre zeros are shown.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"475 \",\"pages\":\"Article 117034\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042725005485\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042725005485","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Anti-Gauss Laguerre polynomials: Some properties and a new interpolation process
Anti-Gauss Laguerre quadrature formulas are based on the zeros of polynomials, we call them Anti-Gauss polynomials, defined in terms of Laguerre orthogonal polynomials. This paper establishes new properties of the Anti-Gauss Laguerre polynomials, and analyzes some “truncated” interpolation processes essentially based on their zeros. Estimates of the corresponding Lebesgue constants are proved, and error bounds in spaces of locally continuous functions, equipped with uniform weighted norms are given. Finally, some numerical tests are presented about the behavior of the Lebesgue functions and Lebesgue constants, and numerical experiments dealing with the approximation of functions having different smoothness are proposed. Comparisons with the results achieved by truncated Lagrange interpolation processes based on Laguerre zeros are shown.
期刊介绍:
The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest.
The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.