{"title":"废电池中锂的选择性浸出和溶剂萃取","authors":"Emmanuel Ayorinde Ajiboye , Trevor Dzwiniel","doi":"10.1016/j.hydromet.2025.106566","DOIUrl":null,"url":null,"abstract":"<div><div>Pre-extracting Li from spent lithium-ion batteries (LIBs) is crucial because the recovery efficiency of Li is low after other critical metals have been extracted. Traditional methods involving black mass roasting followed by water leaching have resulted in the extraction of 76 % Li and 61 % Al. However, pre-leaching Li from pretreated black mass using an oxalic acid solution at both ambient and elevated temperatures significantly improved results, achieving 98.1 % Li, 99.5 % Al, and 100 % Fe extraction while leaving Ni, Co, Mn, and Cu behind under optimal conditions. Oxalic acid crystals were recovered by refrigerating the leach solution at temperatures below 5 °C and were reused with nearly identical leaching efficiency. Selective extraction of Li from the oxalate leach solution was achieved using Cyanex® 936P under optimal conditions. Due to its extremely low Li extraction efficiency, Dichloromethane proved unsuitable as a diluent. Comparative extraction tests using Cyanex® 936P, Cyanex® 272, and DEHPA in kerosene demonstrated that Cyanex® 936P is an excellent extractant for Li, effectively separating it from other impurities. Under optimal conditions, 98.8 % of available Li was extracted using 20 % Cyanex® 936P, compared to 51.1 % with Cyanex® 272 and 39.9 % with DEHPA in kerosene. Additionally, stripping Li from Cyanex® 936P using H<sub>2</sub>SO<sub>4</sub> and HCl was explored, with HCl yielding the best performance.</div></div>","PeriodicalId":13193,"journal":{"name":"Hydrometallurgy","volume":"238 ","pages":"Article 106566"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective leaching and solvent extraction of Lithium from spent batteries\",\"authors\":\"Emmanuel Ayorinde Ajiboye , Trevor Dzwiniel\",\"doi\":\"10.1016/j.hydromet.2025.106566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pre-extracting Li from spent lithium-ion batteries (LIBs) is crucial because the recovery efficiency of Li is low after other critical metals have been extracted. Traditional methods involving black mass roasting followed by water leaching have resulted in the extraction of 76 % Li and 61 % Al. However, pre-leaching Li from pretreated black mass using an oxalic acid solution at both ambient and elevated temperatures significantly improved results, achieving 98.1 % Li, 99.5 % Al, and 100 % Fe extraction while leaving Ni, Co, Mn, and Cu behind under optimal conditions. Oxalic acid crystals were recovered by refrigerating the leach solution at temperatures below 5 °C and were reused with nearly identical leaching efficiency. Selective extraction of Li from the oxalate leach solution was achieved using Cyanex® 936P under optimal conditions. Due to its extremely low Li extraction efficiency, Dichloromethane proved unsuitable as a diluent. Comparative extraction tests using Cyanex® 936P, Cyanex® 272, and DEHPA in kerosene demonstrated that Cyanex® 936P is an excellent extractant for Li, effectively separating it from other impurities. Under optimal conditions, 98.8 % of available Li was extracted using 20 % Cyanex® 936P, compared to 51.1 % with Cyanex® 272 and 39.9 % with DEHPA in kerosene. Additionally, stripping Li from Cyanex® 936P using H<sub>2</sub>SO<sub>4</sub> and HCl was explored, with HCl yielding the best performance.</div></div>\",\"PeriodicalId\":13193,\"journal\":{\"name\":\"Hydrometallurgy\",\"volume\":\"238 \",\"pages\":\"Article 106566\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrometallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304386X25001318\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrometallurgy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304386X25001318","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Selective leaching and solvent extraction of Lithium from spent batteries
Pre-extracting Li from spent lithium-ion batteries (LIBs) is crucial because the recovery efficiency of Li is low after other critical metals have been extracted. Traditional methods involving black mass roasting followed by water leaching have resulted in the extraction of 76 % Li and 61 % Al. However, pre-leaching Li from pretreated black mass using an oxalic acid solution at both ambient and elevated temperatures significantly improved results, achieving 98.1 % Li, 99.5 % Al, and 100 % Fe extraction while leaving Ni, Co, Mn, and Cu behind under optimal conditions. Oxalic acid crystals were recovered by refrigerating the leach solution at temperatures below 5 °C and were reused with nearly identical leaching efficiency. Selective extraction of Li from the oxalate leach solution was achieved using Cyanex® 936P under optimal conditions. Due to its extremely low Li extraction efficiency, Dichloromethane proved unsuitable as a diluent. Comparative extraction tests using Cyanex® 936P, Cyanex® 272, and DEHPA in kerosene demonstrated that Cyanex® 936P is an excellent extractant for Li, effectively separating it from other impurities. Under optimal conditions, 98.8 % of available Li was extracted using 20 % Cyanex® 936P, compared to 51.1 % with Cyanex® 272 and 39.9 % with DEHPA in kerosene. Additionally, stripping Li from Cyanex® 936P using H2SO4 and HCl was explored, with HCl yielding the best performance.
期刊介绍:
Hydrometallurgy aims to compile studies on novel processes, process design, chemistry, modelling, control, economics and interfaces between unit operations, and to provide a forum for discussions on case histories and operational difficulties.
Topics covered include: leaching of metal values by chemical reagents or bacterial action at ambient or elevated pressures and temperatures; separation of solids from leach liquors; removal of impurities and recovery of metal values by precipitation, ion exchange, solvent extraction, gaseous reduction, cementation, electro-winning and electro-refining; pre-treatment of ores by roasting or chemical treatments such as halogenation or reduction; recycling of reagents and treatment of effluents.