皮尔斯展开中数字间隙的极限定理和分形性质

IF 1.2 3区 数学 Q1 MATHEMATICS
Liuhui Lu , Cai Long , Lei Shang
{"title":"皮尔斯展开中数字间隙的极限定理和分形性质","authors":"Liuhui Lu ,&nbsp;Cai Long ,&nbsp;Lei Shang","doi":"10.1016/j.jmaa.2025.130019","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we revisit Shallit's results on the law of large numbers, the central limit theorem, and the law of the iterated logarithm for the digits of Pierce expansions. We extend these limit theorems to the setting of digit gaps in Pierce expansions, showing that digit gaps exhibit the same limit behavior as the digits themselves. However, the fractal properties of digit gaps differ significantly from those of the digits. To capture this difference, we compute the Hausdorff dimension of the exceptional sets associated with the law of large numbers for digit gaps and obtain explicit formulas for these dimensions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"555 1","pages":"Article 130019"},"PeriodicalIF":1.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems and fractal properties of digit gaps in Pierce expansions\",\"authors\":\"Liuhui Lu ,&nbsp;Cai Long ,&nbsp;Lei Shang\",\"doi\":\"10.1016/j.jmaa.2025.130019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we revisit Shallit's results on the law of large numbers, the central limit theorem, and the law of the iterated logarithm for the digits of Pierce expansions. We extend these limit theorems to the setting of digit gaps in Pierce expansions, showing that digit gaps exhibit the same limit behavior as the digits themselves. However, the fractal properties of digit gaps differ significantly from those of the digits. To capture this difference, we compute the Hausdorff dimension of the exceptional sets associated with the law of large numbers for digit gaps and obtain explicit formulas for these dimensions.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"555 1\",\"pages\":\"Article 130019\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25008005\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25008005","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们重新讨论了Shallit关于大数定律、中心极限定理和皮尔斯展开数字的迭代对数定律的结果。我们将这些极限定理推广到皮尔斯展开式中位数间隙的设置,表明位数间隙表现出与数字本身相同的极限行为。然而,数字间隙的分形性质与数字的分形性质有很大的不同。为了捕捉这种差异,我们计算了与数字间隙大数定律相关的异常集的Hausdorff维数,并获得了这些维数的显式公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit theorems and fractal properties of digit gaps in Pierce expansions
In this paper, we revisit Shallit's results on the law of large numbers, the central limit theorem, and the law of the iterated logarithm for the digits of Pierce expansions. We extend these limit theorems to the setting of digit gaps in Pierce expansions, showing that digit gaps exhibit the same limit behavior as the digits themselves. However, the fractal properties of digit gaps differ significantly from those of the digits. To capture this difference, we compute the Hausdorff dimension of the exceptional sets associated with the law of large numbers for digit gaps and obtain explicit formulas for these dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信