Jung Kwan Seo , O-Hyun Kwon , Dae Kyeom Park , Joo Shin Park
{"title":"船舶与自升式支腿碰撞的简化试验土-支腿相互作用模型","authors":"Jung Kwan Seo , O-Hyun Kwon , Dae Kyeom Park , Joo Shin Park","doi":"10.1016/j.ijnaoe.2025.100682","DOIUrl":null,"url":null,"abstract":"<div><div>Jack-up units have recently become common due to the expansion of offshore drilling and installation vessels. In most previous research, guidelines for related jack-up rig structures have assessed the interaction with the soil structure during installation in terms of penetration of a spudcan. However, the design of safe operating conditions must also take into account the interactions with the soil structure in case of horizontal impact loads from collisions with attendant and/or passing vessels. It is therefore important to consider the risk-based design of rig foundations, incorporating a study of soil-structural characteristics, to minimise the effects of collision accidents that may occur under operating conditions. In this study we develop a fundamental dataset and a simplified understanding of soil stiffness that will enable the simulation of the rig-installation process using simplified experimental models that involve soil modelling, and penetration and impact. These data will be used in structural design and risk management for industrial practices as well as in further validation/calibration studies for advanced numerical/experimental modelling and design guidance.</div></div>","PeriodicalId":14160,"journal":{"name":"International Journal of Naval Architecture and Ocean Engineering","volume":"17 ","pages":"Article 100682"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simplified experimental soil-leg interaction model for ship to Jack-up leg collision\",\"authors\":\"Jung Kwan Seo , O-Hyun Kwon , Dae Kyeom Park , Joo Shin Park\",\"doi\":\"10.1016/j.ijnaoe.2025.100682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Jack-up units have recently become common due to the expansion of offshore drilling and installation vessels. In most previous research, guidelines for related jack-up rig structures have assessed the interaction with the soil structure during installation in terms of penetration of a spudcan. However, the design of safe operating conditions must also take into account the interactions with the soil structure in case of horizontal impact loads from collisions with attendant and/or passing vessels. It is therefore important to consider the risk-based design of rig foundations, incorporating a study of soil-structural characteristics, to minimise the effects of collision accidents that may occur under operating conditions. In this study we develop a fundamental dataset and a simplified understanding of soil stiffness that will enable the simulation of the rig-installation process using simplified experimental models that involve soil modelling, and penetration and impact. These data will be used in structural design and risk management for industrial practices as well as in further validation/calibration studies for advanced numerical/experimental modelling and design guidance.</div></div>\",\"PeriodicalId\":14160,\"journal\":{\"name\":\"International Journal of Naval Architecture and Ocean Engineering\",\"volume\":\"17 \",\"pages\":\"Article 100682\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Naval Architecture and Ocean Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2092678225000408\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Naval Architecture and Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2092678225000408","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
A simplified experimental soil-leg interaction model for ship to Jack-up leg collision
Jack-up units have recently become common due to the expansion of offshore drilling and installation vessels. In most previous research, guidelines for related jack-up rig structures have assessed the interaction with the soil structure during installation in terms of penetration of a spudcan. However, the design of safe operating conditions must also take into account the interactions with the soil structure in case of horizontal impact loads from collisions with attendant and/or passing vessels. It is therefore important to consider the risk-based design of rig foundations, incorporating a study of soil-structural characteristics, to minimise the effects of collision accidents that may occur under operating conditions. In this study we develop a fundamental dataset and a simplified understanding of soil stiffness that will enable the simulation of the rig-installation process using simplified experimental models that involve soil modelling, and penetration and impact. These data will be used in structural design and risk management for industrial practices as well as in further validation/calibration studies for advanced numerical/experimental modelling and design guidance.
期刊介绍:
International Journal of Naval Architecture and Ocean Engineering provides a forum for engineers and scientists from a wide range of disciplines to present and discuss various phenomena in the utilization and preservation of ocean environment. Without being limited by the traditional categorization, it is encouraged to present advanced technology development and scientific research, as long as they are aimed for more and better human engagement with ocean environment. Topics include, but not limited to: marine hydrodynamics; structural mechanics; marine propulsion system; design methodology & practice; production technology; system dynamics & control; marine equipment technology; materials science; underwater acoustics; ocean remote sensing; and information technology related to ship and marine systems; ocean energy systems; marine environmental engineering; maritime safety engineering; polar & arctic engineering; coastal & port engineering; subsea engineering; and specialized watercraft engineering.