Jiayi Zhang , Huaizhi Luo , Haoyan Liu , Fei Zhao , Yongliang Li
{"title":"使用O3钝化I/O器件提高堆叠SiGe/Si finfet的电气性能和可靠性","authors":"Jiayi Zhang , Huaizhi Luo , Haoyan Liu , Fei Zhao , Yongliang Li","doi":"10.1016/j.mee.2025.112400","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, O<sub>3</sub> passivation technology for the novel stacked SiGe/Si FinFET input-output (I/O) devices was investigated. First, the O<sub>3</sub> passivation technology was validated based on SiGe MOS capacitance (CAP) structure., with results indicating that interface state density (D<sub>it</sub>) can be reduced to 5.12 × 10<sup>12</sup> eV<sup>−1</sup> cm<sup>−2</sup>. Then, to improve the electrical performance of the stacked SiGe/Si FinFET I/O device, the O<sub>3</sub> passivation technology was introduced between the SiGe/Si fin and gate oxide. As a result, the electrical performance for the stacked SiGe/Si FinFET I/O device was significantly improved. For example, SS could be reduced from the 168 mV/dec to 113 mV/dec, and g<sub>m</sub> could be improved from the 62 μS to 94 μS, which was mainly attributed to the O<sub>3</sub> passivation resulting in the reduction of D<sub>it</sub>. Furthermore, its reliability assessment was also performed. The result confirmed that threshold voltage (V<sub>TH</sub>) drift under negative bias temperature instability (NBTI) and hot carrier injection (HCI) stress were improved by 52.1 % and 60.3 %, respectively. Meanwhile, its maximum operating voltage (V<sub>max</sub>) for a 10 years lifetime at a failure rate of 0.01 % could reach to 2.65 V. Therefore, the O<sub>3</sub> passivation process is practical for the stacked SiGe/Si I/O FinFET device in advanced GAA platforms.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"301 ","pages":"Article 112400"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving electrical performance and reliability of stacked SiGe/Si FinFETs using O3 passivation for I/O devices\",\"authors\":\"Jiayi Zhang , Huaizhi Luo , Haoyan Liu , Fei Zhao , Yongliang Li\",\"doi\":\"10.1016/j.mee.2025.112400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, O<sub>3</sub> passivation technology for the novel stacked SiGe/Si FinFET input-output (I/O) devices was investigated. First, the O<sub>3</sub> passivation technology was validated based on SiGe MOS capacitance (CAP) structure., with results indicating that interface state density (D<sub>it</sub>) can be reduced to 5.12 × 10<sup>12</sup> eV<sup>−1</sup> cm<sup>−2</sup>. Then, to improve the electrical performance of the stacked SiGe/Si FinFET I/O device, the O<sub>3</sub> passivation technology was introduced between the SiGe/Si fin and gate oxide. As a result, the electrical performance for the stacked SiGe/Si FinFET I/O device was significantly improved. For example, SS could be reduced from the 168 mV/dec to 113 mV/dec, and g<sub>m</sub> could be improved from the 62 μS to 94 μS, which was mainly attributed to the O<sub>3</sub> passivation resulting in the reduction of D<sub>it</sub>. Furthermore, its reliability assessment was also performed. The result confirmed that threshold voltage (V<sub>TH</sub>) drift under negative bias temperature instability (NBTI) and hot carrier injection (HCI) stress were improved by 52.1 % and 60.3 %, respectively. Meanwhile, its maximum operating voltage (V<sub>max</sub>) for a 10 years lifetime at a failure rate of 0.01 % could reach to 2.65 V. Therefore, the O<sub>3</sub> passivation process is practical for the stacked SiGe/Si I/O FinFET device in advanced GAA platforms.</div></div>\",\"PeriodicalId\":18557,\"journal\":{\"name\":\"Microelectronic Engineering\",\"volume\":\"301 \",\"pages\":\"Article 112400\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microelectronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167931725000899\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000899","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Improving electrical performance and reliability of stacked SiGe/Si FinFETs using O3 passivation for I/O devices
In this work, O3 passivation technology for the novel stacked SiGe/Si FinFET input-output (I/O) devices was investigated. First, the O3 passivation technology was validated based on SiGe MOS capacitance (CAP) structure., with results indicating that interface state density (Dit) can be reduced to 5.12 × 1012 eV−1 cm−2. Then, to improve the electrical performance of the stacked SiGe/Si FinFET I/O device, the O3 passivation technology was introduced between the SiGe/Si fin and gate oxide. As a result, the electrical performance for the stacked SiGe/Si FinFET I/O device was significantly improved. For example, SS could be reduced from the 168 mV/dec to 113 mV/dec, and gm could be improved from the 62 μS to 94 μS, which was mainly attributed to the O3 passivation resulting in the reduction of Dit. Furthermore, its reliability assessment was also performed. The result confirmed that threshold voltage (VTH) drift under negative bias temperature instability (NBTI) and hot carrier injection (HCI) stress were improved by 52.1 % and 60.3 %, respectively. Meanwhile, its maximum operating voltage (Vmax) for a 10 years lifetime at a failure rate of 0.01 % could reach to 2.65 V. Therefore, the O3 passivation process is practical for the stacked SiGe/Si I/O FinFET device in advanced GAA platforms.
期刊介绍:
Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.