飞机规划与控制的几何方法

IF 5.2 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Francesco Trotti, Damiano Rigo, Riccardo Muradore
{"title":"飞机规划与控制的几何方法","authors":"Francesco Trotti,&nbsp;Damiano Rigo,&nbsp;Riccardo Muradore","doi":"10.1016/j.robot.2025.105181","DOIUrl":null,"url":null,"abstract":"<div><div>Path planning and control of autonomous aircraft is a critical problem, particularly under conditions of model and sensor uncertainty. This paper presents a hierarchical control architecture that integrates geometric and probabilistic methods to address these challenges. The proposed framework combines a high-level controller, a low-level controller, and an observer, leveraging Lie group theory for geometric modeling. The high-level controller formulates the planning problem as a Markov Decision Process (MDP), solved using Monte Carlo Tree Search (MCTS) to generate reference trajectories while avoiding no-fly zones. The low-level controller exploits the relationship between tangent space velocities and left-trivialized velocities in the Lie algebra to produce control commands. State estimation is achieved using a second-order optimal minimum-energy filter formulated on Lie groups, ensuring robust performance under noisy measurements. Simulation results show the efficacy of the proposed architecture in guiding an aircraft from a start point to a target while satisfying operational constraints.</div></div>","PeriodicalId":49592,"journal":{"name":"Robotics and Autonomous Systems","volume":"194 ","pages":"Article 105181"},"PeriodicalIF":5.2000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric methods for aircraft planning and control\",\"authors\":\"Francesco Trotti,&nbsp;Damiano Rigo,&nbsp;Riccardo Muradore\",\"doi\":\"10.1016/j.robot.2025.105181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Path planning and control of autonomous aircraft is a critical problem, particularly under conditions of model and sensor uncertainty. This paper presents a hierarchical control architecture that integrates geometric and probabilistic methods to address these challenges. The proposed framework combines a high-level controller, a low-level controller, and an observer, leveraging Lie group theory for geometric modeling. The high-level controller formulates the planning problem as a Markov Decision Process (MDP), solved using Monte Carlo Tree Search (MCTS) to generate reference trajectories while avoiding no-fly zones. The low-level controller exploits the relationship between tangent space velocities and left-trivialized velocities in the Lie algebra to produce control commands. State estimation is achieved using a second-order optimal minimum-energy filter formulated on Lie groups, ensuring robust performance under noisy measurements. Simulation results show the efficacy of the proposed architecture in guiding an aircraft from a start point to a target while satisfying operational constraints.</div></div>\",\"PeriodicalId\":49592,\"journal\":{\"name\":\"Robotics and Autonomous Systems\",\"volume\":\"194 \",\"pages\":\"Article 105181\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Robotics and Autonomous Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0921889025002787\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Autonomous Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921889025002787","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶飞机的路径规划和控制是一个关键问题,特别是在模型和传感器不确定的情况下。本文提出了一种分层控制体系结构,它集成了几何和概率方法来解决这些挑战。该框架结合了一个高级控制器、一个低级控制器和一个观测器,利用李群理论进行几何建模。高级控制器将规划问题描述为马尔可夫决策过程(MDP),使用蒙特卡罗树搜索(MCTS)来生成参考轨迹,同时避开禁飞区。低级控制器利用切空间速度和李代数中左平凡化速度之间的关系来产生控制命令。状态估计是使用李群上的二阶最优最小能量滤波器实现的,确保了在噪声测量下的鲁棒性能。仿真结果表明,该结构在满足作战约束的情况下,能够有效地引导飞行器从起始点飞向目标点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric methods for aircraft planning and control
Path planning and control of autonomous aircraft is a critical problem, particularly under conditions of model and sensor uncertainty. This paper presents a hierarchical control architecture that integrates geometric and probabilistic methods to address these challenges. The proposed framework combines a high-level controller, a low-level controller, and an observer, leveraging Lie group theory for geometric modeling. The high-level controller formulates the planning problem as a Markov Decision Process (MDP), solved using Monte Carlo Tree Search (MCTS) to generate reference trajectories while avoiding no-fly zones. The low-level controller exploits the relationship between tangent space velocities and left-trivialized velocities in the Lie algebra to produce control commands. State estimation is achieved using a second-order optimal minimum-energy filter formulated on Lie groups, ensuring robust performance under noisy measurements. Simulation results show the efficacy of the proposed architecture in guiding an aircraft from a start point to a target while satisfying operational constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Robotics and Autonomous Systems
Robotics and Autonomous Systems 工程技术-机器人学
CiteScore
9.00
自引率
7.00%
发文量
164
审稿时长
4.5 months
期刊介绍: Robotics and Autonomous Systems will carry articles describing fundamental developments in the field of robotics, with special emphasis on autonomous systems. An important goal of this journal is to extend the state of the art in both symbolic and sensory based robot control and learning in the context of autonomous systems. Robotics and Autonomous Systems will carry articles on the theoretical, computational and experimental aspects of autonomous systems, or modules of such systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信