光敏硅- vo2 -石墨烯超材料中可调谐电磁感应透明和极化频率开关

IF 4.6 2区 物理与天体物理 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junjiao Lu, Xuejun Qiu, Yi Wang, Zhenzhou Cao, Jin Hou, Chengzhi Jin
{"title":"光敏硅- vo2 -石墨烯超材料中可调谐电磁感应透明和极化频率开关","authors":"Junjiao Lu,&nbsp;Xuejun Qiu,&nbsp;Yi Wang,&nbsp;Zhenzhou Cao,&nbsp;Jin Hou,&nbsp;Chengzhi Jin","doi":"10.1016/j.rinp.2025.108418","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a hybrid metamaterial platform integrating graphene, photosensitive silicon, and vanadium dioxide (VO<sub>2</sub>) to achieve dynamically tunable electromagnetically induced transparency (EIT) and polarization-selective frequency switching in the terahertz (THz) regime. The unit cell comprises a graphene cruciform (GC) resonator and four quarter graphene rings resonator (QGRs), enabling precise control of the EIT window’s amplitude and frequency through Fermi level modulation. The EIT effect exhibits robust angular insensitivity (&lt;70°), with a frequency modulation depth of 0.176 and amplitude modulation depth of 0.907. Leveraging the light-driven conductivity of photosensitive silicon and the insulator-to-metal phase transition of VO<sub>2</sub>, the structure dynamically switches between slow-light states and enables single-/dual-frequency polarization-selective transmission at 1.26 THz, 1.85 THz, and 1.14/1.79 THz, achieving a modulation depth up to 92 %. This tri-material synergy overcomes the rigidity of conventional single-component systems, offering a reconfigurable framework for THz communication and sensing devices.</div></div>","PeriodicalId":21042,"journal":{"name":"Results in Physics","volume":"76 ","pages":"Article 108418"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tunable electromagnetically induced transparency and polarization frequency switches in photosensitive silicon-VO2-graphene metamaterial\",\"authors\":\"Junjiao Lu,&nbsp;Xuejun Qiu,&nbsp;Yi Wang,&nbsp;Zhenzhou Cao,&nbsp;Jin Hou,&nbsp;Chengzhi Jin\",\"doi\":\"10.1016/j.rinp.2025.108418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a hybrid metamaterial platform integrating graphene, photosensitive silicon, and vanadium dioxide (VO<sub>2</sub>) to achieve dynamically tunable electromagnetically induced transparency (EIT) and polarization-selective frequency switching in the terahertz (THz) regime. The unit cell comprises a graphene cruciform (GC) resonator and four quarter graphene rings resonator (QGRs), enabling precise control of the EIT window’s amplitude and frequency through Fermi level modulation. The EIT effect exhibits robust angular insensitivity (&lt;70°), with a frequency modulation depth of 0.176 and amplitude modulation depth of 0.907. Leveraging the light-driven conductivity of photosensitive silicon and the insulator-to-metal phase transition of VO<sub>2</sub>, the structure dynamically switches between slow-light states and enables single-/dual-frequency polarization-selective transmission at 1.26 THz, 1.85 THz, and 1.14/1.79 THz, achieving a modulation depth up to 92 %. This tri-material synergy overcomes the rigidity of conventional single-component systems, offering a reconfigurable framework for THz communication and sensing devices.</div></div>\",\"PeriodicalId\":21042,\"journal\":{\"name\":\"Results in Physics\",\"volume\":\"76 \",\"pages\":\"Article 108418\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211379725003122\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211379725003122","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种集成石墨烯、光敏硅和二氧化钒(VO2)的混合超材料平台,以实现在太赫兹(THz)波段的动态可调谐电磁感应透明度(EIT)和极化选择性频率开关。该单元电池由一个石墨烯十字形(GC)谐振器和四个四分之一石墨烯环形谐振器(qgr)组成,可以通过费米电平调制精确控制EIT窗口的幅度和频率。EIT效应表现出稳健的角不灵敏度(<70°),调频深度为0.176,调幅深度为0.907。利用光敏硅的光驱动电导率和VO2的绝缘体到金属相变,该结构在慢光状态之间动态切换,并在1.26 THz, 1.85 THz和1.14/1.79 THz下实现单频/双频偏振选择性传输,实现高达92%的调制深度。这种三材料协同克服了传统单组件系统的刚性,为太赫兹通信和传感设备提供了可重构的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tunable electromagnetically induced transparency and polarization frequency switches in photosensitive silicon-VO2-graphene metamaterial
This work presents a hybrid metamaterial platform integrating graphene, photosensitive silicon, and vanadium dioxide (VO2) to achieve dynamically tunable electromagnetically induced transparency (EIT) and polarization-selective frequency switching in the terahertz (THz) regime. The unit cell comprises a graphene cruciform (GC) resonator and four quarter graphene rings resonator (QGRs), enabling precise control of the EIT window’s amplitude and frequency through Fermi level modulation. The EIT effect exhibits robust angular insensitivity (<70°), with a frequency modulation depth of 0.176 and amplitude modulation depth of 0.907. Leveraging the light-driven conductivity of photosensitive silicon and the insulator-to-metal phase transition of VO2, the structure dynamically switches between slow-light states and enables single-/dual-frequency polarization-selective transmission at 1.26 THz, 1.85 THz, and 1.14/1.79 THz, achieving a modulation depth up to 92 %. This tri-material synergy overcomes the rigidity of conventional single-component systems, offering a reconfigurable framework for THz communication and sensing devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Physics
Results in Physics MATERIALS SCIENCE, MULTIDISCIPLINARYPHYSIC-PHYSICS, MULTIDISCIPLINARY
CiteScore
8.70
自引率
9.40%
发文量
754
审稿时长
50 days
期刊介绍: Results in Physics is an open access journal offering authors the opportunity to publish in all fundamental and interdisciplinary areas of physics, materials science, and applied physics. Papers of a theoretical, computational, and experimental nature are all welcome. Results in Physics accepts papers that are scientifically sound, technically correct and provide valuable new knowledge to the physics community. Topics such as three-dimensional flow and magnetohydrodynamics are not within the scope of Results in Physics. Results in Physics welcomes three types of papers: 1. Full research papers 2. Microarticles: very short papers, no longer than two pages. They may consist of a single, but well-described piece of information, such as: - Data and/or a plot plus a description - Description of a new method or instrumentation - Negative results - Concept or design study 3. Letters to the Editor: Letters discussing a recent article published in Results in Physics are welcome. These are objective, constructive, or educational critiques of papers published in Results in Physics. Accepted letters will be sent to the author of the original paper for a response. Each letter and response is published together. Letters should be received within 8 weeks of the article''s publication. They should not exceed 750 words of text and 10 references.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信