AstroClearNet:用于多帧天文图像恢复的深度图像先验

IF 1.8 4区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Yashil Sukurdeep , Fausto Navarro , Tamás Budavári
{"title":"AstroClearNet:用于多帧天文图像恢复的深度图像先验","authors":"Yashil Sukurdeep ,&nbsp;Fausto Navarro ,&nbsp;Tamás Budavári","doi":"10.1016/j.ascom.2025.100999","DOIUrl":null,"url":null,"abstract":"<div><div>Recovering high-fidelity images of the night sky from blurred observations is a fundamental problem in astronomy, where traditional methods typically fall short. In ground-based astronomy, combining multiple exposures to enhance signal-to-noise ratios is further complicated by variations in the point-spread function caused by atmospheric turbulence. In this work, we present a self-supervised multi-frame method, based on deep image priors, for denoising, deblurring, and coadding ground-based exposures. Central to our approach is a carefully designed convolutional neural network that integrates information across multiple observations and enforces physically motivated constraints. We demonstrate the method’s potential by processing Hyper Suprime-Cam exposures, yielding promising preliminary results with sharper restored images.</div></div>","PeriodicalId":48757,"journal":{"name":"Astronomy and Computing","volume":"53 ","pages":"Article 100999"},"PeriodicalIF":1.8000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AstroClearNet: Deep image prior for multi-frame astronomical image restoration\",\"authors\":\"Yashil Sukurdeep ,&nbsp;Fausto Navarro ,&nbsp;Tamás Budavári\",\"doi\":\"10.1016/j.ascom.2025.100999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recovering high-fidelity images of the night sky from blurred observations is a fundamental problem in astronomy, where traditional methods typically fall short. In ground-based astronomy, combining multiple exposures to enhance signal-to-noise ratios is further complicated by variations in the point-spread function caused by atmospheric turbulence. In this work, we present a self-supervised multi-frame method, based on deep image priors, for denoising, deblurring, and coadding ground-based exposures. Central to our approach is a carefully designed convolutional neural network that integrates information across multiple observations and enforces physically motivated constraints. We demonstrate the method’s potential by processing Hyper Suprime-Cam exposures, yielding promising preliminary results with sharper restored images.</div></div>\",\"PeriodicalId\":48757,\"journal\":{\"name\":\"Astronomy and Computing\",\"volume\":\"53 \",\"pages\":\"Article 100999\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomy and Computing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213133725000721\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy and Computing","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213133725000721","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

从模糊的观测数据中恢复高保真的夜空图像是天文学中的一个基本问题,传统方法通常无法做到这一点。在地面天文学中,由于大气湍流引起的点扩散函数的变化,结合多次曝光来提高信噪比变得更加复杂。在这项工作中,我们提出了一种基于深度图像先验的自监督多帧方法,用于去噪、去模糊和合成地面曝光。我们的方法的核心是一个精心设计的卷积神经网络,它集成了多个观察结果的信息,并强制执行物理动机约束。我们通过处理super super - prime- cam曝光来展示该方法的潜力,产生了具有更清晰恢复图像的有希望的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AstroClearNet: Deep image prior for multi-frame astronomical image restoration
Recovering high-fidelity images of the night sky from blurred observations is a fundamental problem in astronomy, where traditional methods typically fall short. In ground-based astronomy, combining multiple exposures to enhance signal-to-noise ratios is further complicated by variations in the point-spread function caused by atmospheric turbulence. In this work, we present a self-supervised multi-frame method, based on deep image priors, for denoising, deblurring, and coadding ground-based exposures. Central to our approach is a carefully designed convolutional neural network that integrates information across multiple observations and enforces physically motivated constraints. We demonstrate the method’s potential by processing Hyper Suprime-Cam exposures, yielding promising preliminary results with sharper restored images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astronomy and Computing
Astronomy and Computing ASTRONOMY & ASTROPHYSICSCOMPUTER SCIENCE,-COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.10
自引率
8.00%
发文量
67
期刊介绍: Astronomy and Computing is a peer-reviewed journal that focuses on the broad area between astronomy, computer science and information technology. The journal aims to publish the work of scientists and (software) engineers in all aspects of astronomical computing, including the collection, analysis, reduction, visualisation, preservation and dissemination of data, and the development of astronomical software and simulations. The journal covers applications for academic computer science techniques to astronomy, as well as novel applications of information technologies within astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信