加氢站选址:中国商业实体影响的案例研究

IF 7 2区 工程技术 Q1 ENERGY & FUELS
Hui Fang , Ping Ma , XiaoLei Wang , NaiRong Tan , Tao Ma
{"title":"加氢站选址:中国商业实体影响的案例研究","authors":"Hui Fang ,&nbsp;Ping Ma ,&nbsp;XiaoLei Wang ,&nbsp;NaiRong Tan ,&nbsp;Tao Ma","doi":"10.1016/j.seta.2025.104556","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces machine-learning techniques to analyze the impact of surrounding commercial entities on hydrogen refueling station (HRS) site selection. A large-scale multi-entity dataset is established through field research and data fusion, and the random forest (RF) algorithm is used to quantify the importance of influencing factors, thereby overcoming the subjectivity bias in existing studies. The cross-validation results suggest that the RF model has high stability and generalizability for HRS site selection. In addition, the RF model excels in classification tasks and maintains consistent performance across different datasets. This study provides valuable insights into HRS site selection by incorporating commercial entity data and leveraging machine-learning techniques.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"82 ","pages":"Article 104556"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen refueling siting: A case study from China on the influence of commercial entities\",\"authors\":\"Hui Fang ,&nbsp;Ping Ma ,&nbsp;XiaoLei Wang ,&nbsp;NaiRong Tan ,&nbsp;Tao Ma\",\"doi\":\"10.1016/j.seta.2025.104556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study introduces machine-learning techniques to analyze the impact of surrounding commercial entities on hydrogen refueling station (HRS) site selection. A large-scale multi-entity dataset is established through field research and data fusion, and the random forest (RF) algorithm is used to quantify the importance of influencing factors, thereby overcoming the subjectivity bias in existing studies. The cross-validation results suggest that the RF model has high stability and generalizability for HRS site selection. In addition, the RF model excels in classification tasks and maintains consistent performance across different datasets. This study provides valuable insights into HRS site selection by incorporating commercial entity data and leveraging machine-learning techniques.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"82 \",\"pages\":\"Article 104556\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221313882500387X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221313882500387X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究引入机器学习技术,分析周边商业实体对加氢站(HRS)选址的影响。通过实地调研和数据融合,建立大规模的多实体数据集,利用随机森林(random forest, RF)算法量化影响因素的重要性,克服了现有研究中的主观性偏差。交叉验证结果表明,该模型对HRS选址具有较高的稳定性和通用性。此外,RF模型在分类任务方面表现出色,并在不同数据集之间保持一致的性能。本研究通过整合商业实体数据和利用机器学习技术,为HRS选址提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen refueling siting: A case study from China on the influence of commercial entities
This study introduces machine-learning techniques to analyze the impact of surrounding commercial entities on hydrogen refueling station (HRS) site selection. A large-scale multi-entity dataset is established through field research and data fusion, and the random forest (RF) algorithm is used to quantify the importance of influencing factors, thereby overcoming the subjectivity bias in existing studies. The cross-validation results suggest that the RF model has high stability and generalizability for HRS site selection. In addition, the RF model excels in classification tasks and maintains consistent performance across different datasets. This study provides valuable insights into HRS site selection by incorporating commercial entity data and leveraging machine-learning techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy Technologies and Assessments
Sustainable Energy Technologies and Assessments Energy-Renewable Energy, Sustainability and the Environment
CiteScore
12.70
自引率
12.50%
发文量
1091
期刊介绍: Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信