非线性动力学在非线性输电线路网络中的应用:精确解、分数分析和新发现

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xinchen Liang, Peng Guo, Jianming Qi
{"title":"非线性动力学在非线性输电线路网络中的应用:精确解、分数分析和新发现","authors":"Xinchen Liang,&nbsp;Peng Guo,&nbsp;Jianming Qi","doi":"10.1016/j.aej.2025.08.042","DOIUrl":null,"url":null,"abstract":"<div><div>This study focuses on nonlinear electrical transmission line networks (NETNs), exploring their dynamics via high-order modeling and fractional-order analysis. It first uses the extended tanh method to solve the quartic nonlinear voltage equation of multi-coupled discrete networks, yielding exact solutions like multi-peak and parabolic solitons. Fractional-order operators significantly regulate signal distribution, amplitude, and propagation; dispersive element Cs decisively affects voltage amplitude and compensation (e.g., peak rising linearly as Cs increases from 20 to 60 pF). Differences between fractional-order operators (e.g., Conformable, Riemann–Liouville) in impacting system potential are negligible. Via 3D phase portraits, Lyapunov exponents (first quantifying chaos), and Runge–Kutta–Nyström method (errors <span><math><mrow><mo>&lt;</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span>), it reveals signal distortion from modulation instability. Compared to prior second-order models, it supplements high-order stability analysis via quartic equations, offering a precision-efficiency adjustable theoretical toolchain for aerospace power anti-interference and high-voltage transmission parameter optimization.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"129 ","pages":"Pages 1258-1278"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of nonlinear dynamics in nonlinear electrical transmission line networks: Exact solutions, fractional analysis and new discoveries\",\"authors\":\"Xinchen Liang,&nbsp;Peng Guo,&nbsp;Jianming Qi\",\"doi\":\"10.1016/j.aej.2025.08.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study focuses on nonlinear electrical transmission line networks (NETNs), exploring their dynamics via high-order modeling and fractional-order analysis. It first uses the extended tanh method to solve the quartic nonlinear voltage equation of multi-coupled discrete networks, yielding exact solutions like multi-peak and parabolic solitons. Fractional-order operators significantly regulate signal distribution, amplitude, and propagation; dispersive element Cs decisively affects voltage amplitude and compensation (e.g., peak rising linearly as Cs increases from 20 to 60 pF). Differences between fractional-order operators (e.g., Conformable, Riemann–Liouville) in impacting system potential are negligible. Via 3D phase portraits, Lyapunov exponents (first quantifying chaos), and Runge–Kutta–Nyström method (errors <span><math><mrow><mo>&lt;</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>9</mn></mrow></msup></mrow></math></span>), it reveals signal distortion from modulation instability. Compared to prior second-order models, it supplements high-order stability analysis via quartic equations, offering a precision-efficiency adjustable theoretical toolchain for aerospace power anti-interference and high-voltage transmission parameter optimization.</div></div>\",\"PeriodicalId\":7484,\"journal\":{\"name\":\"alexandria engineering journal\",\"volume\":\"129 \",\"pages\":\"Pages 1258-1278\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"alexandria engineering journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110016825009391\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009391","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究以非线性输电线路网络(NETNs)为研究对象,透过高阶模型与分数阶分析来探讨其动力学。首先利用扩展tanh法求解了多耦合离散网络的四次非线性电压方程,得到了多峰和抛物型孤子的精确解。分数阶算子显著调节信号的分布、幅度和传播;色散元件Cs决定性地影响电压幅值和补偿(例如,当Cs从20到60 pF增加时,峰值线性上升)。分数阶算子(如Conformable、Riemann-Liouville)对系统电位的影响可以忽略不计。通过三维相位肖像,李雅普诺夫指数(首先量化混沌)和Runge-Kutta-Nyström方法(误差<;10−9),它揭示了调制不稳定性引起的信号失真。与已有的二阶模型相比,该模型补充了四次方程的高阶稳定性分析,为航天动力抗干扰和高压传动参数优化提供了精度效率可调的理论工具链。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Application of nonlinear dynamics in nonlinear electrical transmission line networks: Exact solutions, fractional analysis and new discoveries
This study focuses on nonlinear electrical transmission line networks (NETNs), exploring their dynamics via high-order modeling and fractional-order analysis. It first uses the extended tanh method to solve the quartic nonlinear voltage equation of multi-coupled discrete networks, yielding exact solutions like multi-peak and parabolic solitons. Fractional-order operators significantly regulate signal distribution, amplitude, and propagation; dispersive element Cs decisively affects voltage amplitude and compensation (e.g., peak rising linearly as Cs increases from 20 to 60 pF). Differences between fractional-order operators (e.g., Conformable, Riemann–Liouville) in impacting system potential are negligible. Via 3D phase portraits, Lyapunov exponents (first quantifying chaos), and Runge–Kutta–Nyström method (errors <109), it reveals signal distortion from modulation instability. Compared to prior second-order models, it supplements high-order stability analysis via quartic equations, offering a precision-efficiency adjustable theoretical toolchain for aerospace power anti-interference and high-voltage transmission parameter optimization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信