Klein-Gordon-Zakharov系统的高阶节能方案

IF 2.5 2区 数学 Q1 MATHEMATICS, APPLIED
Hongji Guo , Yayun Fu , Xi Xi , Gengen Zhang
{"title":"Klein-Gordon-Zakharov系统的高阶节能方案","authors":"Hongji Guo ,&nbsp;Yayun Fu ,&nbsp;Xi Xi ,&nbsp;Gengen Zhang","doi":"10.1016/j.camwa.2025.08.030","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents a family of highly accurate energy-conserving algorithms for solving the Klein-Gordon-Zakharov equation, developed through the quadratic auxiliary variable (QAV) transformation approach. The proposed methodology employs Fourier pseudospectral discretization for spatial dimensions and symplectic Runge-Kutta methods for temporal integration, ensuring exact energy conservation in the fully-discrete framework. To handle the resulting nonlinear equations, we construct an efficient fixed-point iteration algorithm. Extensive numerical experiments are performed, comparing the proposed method with existing schemes, and the results show excellent consistency with theoretical expectations.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"197 ","pages":"Pages 217-234"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-order energy-preserving schemes for the Klein-Gordon-Zakharov system\",\"authors\":\"Hongji Guo ,&nbsp;Yayun Fu ,&nbsp;Xi Xi ,&nbsp;Gengen Zhang\",\"doi\":\"10.1016/j.camwa.2025.08.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work presents a family of highly accurate energy-conserving algorithms for solving the Klein-Gordon-Zakharov equation, developed through the quadratic auxiliary variable (QAV) transformation approach. The proposed methodology employs Fourier pseudospectral discretization for spatial dimensions and symplectic Runge-Kutta methods for temporal integration, ensuring exact energy conservation in the fully-discrete framework. To handle the resulting nonlinear equations, we construct an efficient fixed-point iteration algorithm. Extensive numerical experiments are performed, comparing the proposed method with existing schemes, and the results show excellent consistency with theoretical expectations.</div></div>\",\"PeriodicalId\":55218,\"journal\":{\"name\":\"Computers & Mathematics with Applications\",\"volume\":\"197 \",\"pages\":\"Pages 217-234\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Mathematics with Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898122125003633\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125003633","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

这项工作提出了一系列高精度的节能算法来求解Klein-Gordon-Zakharov方程,这些算法是通过二次辅助变量(QAV)变换方法开发的。所提出的方法采用傅里叶伪谱离散化的空间维度和辛龙格-库塔方法的时间积分,确保精确的能量守恒在完全离散的框架。为了处理得到的非线性方程,我们构造了一个高效的不动点迭代算法。进行了大量的数值实验,并将所提出的方法与现有方案进行了比较,结果与理论预期非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order energy-preserving schemes for the Klein-Gordon-Zakharov system
This work presents a family of highly accurate energy-conserving algorithms for solving the Klein-Gordon-Zakharov equation, developed through the quadratic auxiliary variable (QAV) transformation approach. The proposed methodology employs Fourier pseudospectral discretization for spatial dimensions and symplectic Runge-Kutta methods for temporal integration, ensuring exact energy conservation in the fully-discrete framework. To handle the resulting nonlinear equations, we construct an efficient fixed-point iteration algorithm. Extensive numerical experiments are performed, comparing the proposed method with existing schemes, and the results show excellent consistency with theoretical expectations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信