Er单原子工程在光催化CO2还原中的双机制调控:增强电荷动力学和分子活化

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Jinge Hao, Yongjin Li*, Zhifeng Li, Zhaoyi Yin, Liang Xu, Yichao Wang, Sicheng Gao, Yadong Liu, Jianbei Qiu, Zhengwen Yang and Zhiguo Song*, 
{"title":"Er单原子工程在光催化CO2还原中的双机制调控:增强电荷动力学和分子活化","authors":"Jinge Hao,&nbsp;Yongjin Li*,&nbsp;Zhifeng Li,&nbsp;Zhaoyi Yin,&nbsp;Liang Xu,&nbsp;Yichao Wang,&nbsp;Sicheng Gao,&nbsp;Yadong Liu,&nbsp;Jianbei Qiu,&nbsp;Zhengwen Yang and Zhiguo Song*,&nbsp;","doi":"10.1021/acscatal.5c03633","DOIUrl":null,"url":null,"abstract":"<p >Photocatalytic CO<sub>2</sub> reduction represents a promising strategy for solar-to-fuel conversion; however, challenges remain in optimizing active sites and charge carrier dynamics. In this work, we successfully constructed a rare-earth-based atomic engineering strategy to form erbium (Er) single atoms anchored on oxygen-deficient BiVO<sub>4</sub> through hydrothermal synthesis and controlled calcination. The unique 4f electronic configuration and high coordination flexibility of the rare earth atoms optimized the band structure of the catalyst, facilitating the efficient separation and transfer of photogenerated charge carriers. Simultaneously, the atomically dispersed active sites activated the CO<sub>2</sub> molecules via strong orbital hybridization, lowering the energy barrier for *COOH intermediate formation and enhancing CO selectivity. Density functional theory calculations and in situ characterization analysis indicated that the Er single atoms modulated local charge distribution, accelerating electron transfer to the adsorbed CO<sub>2</sub> while stabilizing key intermediates. The optimized catalyst achieved a CO yield rate of 496.23 μmol·g<sup>–1</sup>·h<sup>–1</sup> with 99% selectivity, representing an 11.2-fold enhancement over pristine BiVO<sub>4</sub>. This study elucidated the critical role of rare-earth single-atom sites in directing charge kinetics and molecular activation pathways, offering atomic-level insights for designing high-performance photocatalytic systems for carbon neutrality applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 17","pages":"15172–15182"},"PeriodicalIF":13.1000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual-Mechanism Regulation in Photocatalytic CO2 Reduction through Er Single-Atom Engineering: Enhancing Charge Dynamics and Molecular Activation\",\"authors\":\"Jinge Hao,&nbsp;Yongjin Li*,&nbsp;Zhifeng Li,&nbsp;Zhaoyi Yin,&nbsp;Liang Xu,&nbsp;Yichao Wang,&nbsp;Sicheng Gao,&nbsp;Yadong Liu,&nbsp;Jianbei Qiu,&nbsp;Zhengwen Yang and Zhiguo Song*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c03633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Photocatalytic CO<sub>2</sub> reduction represents a promising strategy for solar-to-fuel conversion; however, challenges remain in optimizing active sites and charge carrier dynamics. In this work, we successfully constructed a rare-earth-based atomic engineering strategy to form erbium (Er) single atoms anchored on oxygen-deficient BiVO<sub>4</sub> through hydrothermal synthesis and controlled calcination. The unique 4f electronic configuration and high coordination flexibility of the rare earth atoms optimized the band structure of the catalyst, facilitating the efficient separation and transfer of photogenerated charge carriers. Simultaneously, the atomically dispersed active sites activated the CO<sub>2</sub> molecules via strong orbital hybridization, lowering the energy barrier for *COOH intermediate formation and enhancing CO selectivity. Density functional theory calculations and in situ characterization analysis indicated that the Er single atoms modulated local charge distribution, accelerating electron transfer to the adsorbed CO<sub>2</sub> while stabilizing key intermediates. The optimized catalyst achieved a CO yield rate of 496.23 μmol·g<sup>–1</sup>·h<sup>–1</sup> with 99% selectivity, representing an 11.2-fold enhancement over pristine BiVO<sub>4</sub>. This study elucidated the critical role of rare-earth single-atom sites in directing charge kinetics and molecular activation pathways, offering atomic-level insights for designing high-performance photocatalytic systems for carbon neutrality applications.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 17\",\"pages\":\"15172–15182\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c03633\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c03633","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

光催化CO2还原代表了太阳能到燃料转换的一个有前途的策略;然而,在优化活性位点和载流子动力学方面仍然存在挑战。在本研究中,我们成功构建了一种基于稀土的原子工程策略,通过水热合成和控制煅烧在缺氧BiVO4上形成铒(Er)单原子。稀土原子独特的4f电子构型和高配位灵活性优化了催化剂的能带结构,促进了光生载流子的高效分离和转移。同时,原子分散的活性位点通过强轨道杂化激活CO2分子,降低了*COOH中间体形成的能垒,提高了CO的选择性。密度泛函理论计算和原位表征分析表明,Er单原子调节了局部电荷分布,加速了电子向吸附CO2的转移,同时稳定了关键中间体。优化后的催化剂CO产率为496.23 μmol·g-1·h-1,选择性为99%,比原始BiVO4提高11.2倍。这项研究阐明了稀土单原子位点在指导电荷动力学和分子活化途径中的关键作用,为设计用于碳中和应用的高性能光催化系统提供了原子水平的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual-Mechanism Regulation in Photocatalytic CO2 Reduction through Er Single-Atom Engineering: Enhancing Charge Dynamics and Molecular Activation

Dual-Mechanism Regulation in Photocatalytic CO2 Reduction through Er Single-Atom Engineering: Enhancing Charge Dynamics and Molecular Activation

Photocatalytic CO2 reduction represents a promising strategy for solar-to-fuel conversion; however, challenges remain in optimizing active sites and charge carrier dynamics. In this work, we successfully constructed a rare-earth-based atomic engineering strategy to form erbium (Er) single atoms anchored on oxygen-deficient BiVO4 through hydrothermal synthesis and controlled calcination. The unique 4f electronic configuration and high coordination flexibility of the rare earth atoms optimized the band structure of the catalyst, facilitating the efficient separation and transfer of photogenerated charge carriers. Simultaneously, the atomically dispersed active sites activated the CO2 molecules via strong orbital hybridization, lowering the energy barrier for *COOH intermediate formation and enhancing CO selectivity. Density functional theory calculations and in situ characterization analysis indicated that the Er single atoms modulated local charge distribution, accelerating electron transfer to the adsorbed CO2 while stabilizing key intermediates. The optimized catalyst achieved a CO yield rate of 496.23 μmol·g–1·h–1 with 99% selectivity, representing an 11.2-fold enhancement over pristine BiVO4. This study elucidated the critical role of rare-earth single-atom sites in directing charge kinetics and molecular activation pathways, offering atomic-level insights for designing high-performance photocatalytic systems for carbon neutrality applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信