高铁氧体硅酸盐水泥:Q相和石膏对水化动力学的协同影响

IF 13.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Jianhui He , Mai Zhang , Zhenbin Lei , Ji Liu , Yulian Deng , Jinhai Lu , Lu Yang , Fazhou Wang
{"title":"高铁氧体硅酸盐水泥:Q相和石膏对水化动力学的协同影响","authors":"Jianhui He ,&nbsp;Mai Zhang ,&nbsp;Zhenbin Lei ,&nbsp;Ji Liu ,&nbsp;Yulian Deng ,&nbsp;Jinhai Lu ,&nbsp;Lu Yang ,&nbsp;Fazhou Wang","doi":"10.1016/j.cemconres.2025.108029","DOIUrl":null,"url":null,"abstract":"<div><div>High ferrite Portland cement (HFPC), a low-carbon alternative to ordinary Portland cement with reduced C<sub>3</sub>S and C<sub>3</sub>A alongside elevated C<sub>4</sub>AF and C<sub>2</sub>S, exhibits insufficient early- and mid-term strength development due to sluggish hydration kinetics. To address this limitation, the synergistic effects of Q phase (Ca<sub>20</sub>Al<sub>26</sub>Mg<sub>3</sub>Si<sub>3</sub>O<sub>68</sub>) clinker (0–12 wt%) and gypsum (0–8 wt%) on the hydration regulation, mechanical properties and microstructure evolution of HFPC were systematically investigated. Results demonstrate that a hybrid formulation containing 6 wt% Q phase clinker and 4 wt% gypsum achieves a 1-day compressive strength comparable to pure HFPC while significantly enhancing the 28-day strength to over 90 MPa. Gypsum addition was found to mitigate the early-stage hydration retardation induced by Q phase, primarily by promoting the nucleation and stabilization of ettringite. This synergy elongates C-(A-)S-H chains and enhances chloride binding than HFPC, with concurrent porosity reduction and pore size distribution homogenization collectively boosting mechanical and durability performance.</div></div>","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"199 ","pages":"Article 108029"},"PeriodicalIF":13.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High ferrite Portland cement: Synergistic influence of Q phase and gypsum on hydration kinetics\",\"authors\":\"Jianhui He ,&nbsp;Mai Zhang ,&nbsp;Zhenbin Lei ,&nbsp;Ji Liu ,&nbsp;Yulian Deng ,&nbsp;Jinhai Lu ,&nbsp;Lu Yang ,&nbsp;Fazhou Wang\",\"doi\":\"10.1016/j.cemconres.2025.108029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High ferrite Portland cement (HFPC), a low-carbon alternative to ordinary Portland cement with reduced C<sub>3</sub>S and C<sub>3</sub>A alongside elevated C<sub>4</sub>AF and C<sub>2</sub>S, exhibits insufficient early- and mid-term strength development due to sluggish hydration kinetics. To address this limitation, the synergistic effects of Q phase (Ca<sub>20</sub>Al<sub>26</sub>Mg<sub>3</sub>Si<sub>3</sub>O<sub>68</sub>) clinker (0–12 wt%) and gypsum (0–8 wt%) on the hydration regulation, mechanical properties and microstructure evolution of HFPC were systematically investigated. Results demonstrate that a hybrid formulation containing 6 wt% Q phase clinker and 4 wt% gypsum achieves a 1-day compressive strength comparable to pure HFPC while significantly enhancing the 28-day strength to over 90 MPa. Gypsum addition was found to mitigate the early-stage hydration retardation induced by Q phase, primarily by promoting the nucleation and stabilization of ettringite. This synergy elongates C-(A-)S-H chains and enhances chloride binding than HFPC, with concurrent porosity reduction and pore size distribution homogenization collectively boosting mechanical and durability performance.</div></div>\",\"PeriodicalId\":266,\"journal\":{\"name\":\"Cement and Concrete Research\",\"volume\":\"199 \",\"pages\":\"Article 108029\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cement and Concrete Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0008884625002480\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008884625002480","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

高铁氧体硅酸盐水泥(HFPC)是普通硅酸盐水泥的低碳替代品,其C3S和C3A降低,C4AF和C2S升高,但由于水化动力学缓慢,早期和中期强度发展不足。为了解决这一限制,系统研究了Q相(Ca20Al26Mg3Si3O68)熟料(0-12 wt%)和石膏(0-8 wt%)对HFPC水化调节、力学性能和微观结构演变的协同作用。结果表明,含有6 wt% Q相熟料和4 wt%石膏的混合配方可获得与纯HFPC相当的1天抗压强度,同时显著提高28天强度,超过90 MPa。石膏的加入可以减轻Q相引起的早期水化迟缓,主要是通过促进钙矾石的成核和稳定来实现的。与HFPC相比,这种协同作用延长了C-(A-)S-H链,增强了氯离子的结合,同时孔隙率降低,孔径分布均匀化,共同提高了机械性能和耐用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High ferrite Portland cement: Synergistic influence of Q phase and gypsum on hydration kinetics
High ferrite Portland cement (HFPC), a low-carbon alternative to ordinary Portland cement with reduced C3S and C3A alongside elevated C4AF and C2S, exhibits insufficient early- and mid-term strength development due to sluggish hydration kinetics. To address this limitation, the synergistic effects of Q phase (Ca20Al26Mg3Si3O68) clinker (0–12 wt%) and gypsum (0–8 wt%) on the hydration regulation, mechanical properties and microstructure evolution of HFPC were systematically investigated. Results demonstrate that a hybrid formulation containing 6 wt% Q phase clinker and 4 wt% gypsum achieves a 1-day compressive strength comparable to pure HFPC while significantly enhancing the 28-day strength to over 90 MPa. Gypsum addition was found to mitigate the early-stage hydration retardation induced by Q phase, primarily by promoting the nucleation and stabilization of ettringite. This synergy elongates C-(A-)S-H chains and enhances chloride binding than HFPC, with concurrent porosity reduction and pore size distribution homogenization collectively boosting mechanical and durability performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cement and Concrete Research
Cement and Concrete Research 工程技术-材料科学:综合
CiteScore
20.90
自引率
12.30%
发文量
318
审稿时长
53 days
期刊介绍: Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信