认识到CO2还原开始时通过溶解-再沉积重建铜的普遍性

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Blaž Tomc*, Marjan Bele*, Matic Plut, Mitja Kostelec, Stefan Popović, Mohammed Azeezulla Nazrulla, Francisco Ruiz-Zepeda, Ana Rebeka Kamšek, Martin Šala, Adam Elbataioui, Lidija D. Rafailović, Yasmin Bastos Pissolitto, Francisco Trivinho-Strixino, Wojciech Jerzy Stępniowski, Luka Suhadolnik and Nejc Hodnik*, 
{"title":"认识到CO2还原开始时通过溶解-再沉积重建铜的普遍性","authors":"Blaž Tomc*,&nbsp;Marjan Bele*,&nbsp;Matic Plut,&nbsp;Mitja Kostelec,&nbsp;Stefan Popović,&nbsp;Mohammed Azeezulla Nazrulla,&nbsp;Francisco Ruiz-Zepeda,&nbsp;Ana Rebeka Kamšek,&nbsp;Martin Šala,&nbsp;Adam Elbataioui,&nbsp;Lidija D. Rafailović,&nbsp;Yasmin Bastos Pissolitto,&nbsp;Francisco Trivinho-Strixino,&nbsp;Wojciech Jerzy Stępniowski,&nbsp;Luka Suhadolnik and Nejc Hodnik*,&nbsp;","doi":"10.1021/acs.jpclett.5c01974","DOIUrl":null,"url":null,"abstract":"<p >The electrochemical CO<sub>2</sub> reduction (ECO<sub>2</sub>R) on copper (Cu) remains one of the most promising pathways to convert CO<sub>2</sub> into value-added products. However, it suffers from severe restructuring, resulting in the unknown structural identity of the ECO<sub>2</sub>R active catalyst. Here, we show that dissolution–redeposition is the universal early-stage restructuring mechanism in ECO<sub>2</sub>R, occurring across all the tested Cu morphologies, including foils, nanoparticles, oxide-derived films, and gas diffusion electrodes. Using identical location scanning electron microscopy, we directly visualize and confirm that this transformation begins at the reaction onset, reshaping catalyst morphology and complicating structure–activity interpretations. Our findings demonstrate that all the Cu catalysts act as precursors to their true, <i>in situ</i>-formed active phase, generated through the reduction of Cu oxides and electrolyte-driven dissolution-redeposition. Recognizing the universality of this transformation is essential for accurate mechanistic understanding and the rational design of future Cu-based ECO<sub>2</sub>R catalysts.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"16 36","pages":"9553–9560"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c01974","citationCount":"0","resultStr":"{\"title\":\"Recognizing the Universality of Copper Reconstruction Via Dissolution–Redeposition at the Onset of CO2 Reduction\",\"authors\":\"Blaž Tomc*,&nbsp;Marjan Bele*,&nbsp;Matic Plut,&nbsp;Mitja Kostelec,&nbsp;Stefan Popović,&nbsp;Mohammed Azeezulla Nazrulla,&nbsp;Francisco Ruiz-Zepeda,&nbsp;Ana Rebeka Kamšek,&nbsp;Martin Šala,&nbsp;Adam Elbataioui,&nbsp;Lidija D. Rafailović,&nbsp;Yasmin Bastos Pissolitto,&nbsp;Francisco Trivinho-Strixino,&nbsp;Wojciech Jerzy Stępniowski,&nbsp;Luka Suhadolnik and Nejc Hodnik*,&nbsp;\",\"doi\":\"10.1021/acs.jpclett.5c01974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The electrochemical CO<sub>2</sub> reduction (ECO<sub>2</sub>R) on copper (Cu) remains one of the most promising pathways to convert CO<sub>2</sub> into value-added products. However, it suffers from severe restructuring, resulting in the unknown structural identity of the ECO<sub>2</sub>R active catalyst. Here, we show that dissolution–redeposition is the universal early-stage restructuring mechanism in ECO<sub>2</sub>R, occurring across all the tested Cu morphologies, including foils, nanoparticles, oxide-derived films, and gas diffusion electrodes. Using identical location scanning electron microscopy, we directly visualize and confirm that this transformation begins at the reaction onset, reshaping catalyst morphology and complicating structure–activity interpretations. Our findings demonstrate that all the Cu catalysts act as precursors to their true, <i>in situ</i>-formed active phase, generated through the reduction of Cu oxides and electrolyte-driven dissolution-redeposition. Recognizing the universality of this transformation is essential for accurate mechanistic understanding and the rational design of future Cu-based ECO<sub>2</sub>R catalysts.</p>\",\"PeriodicalId\":62,\"journal\":{\"name\":\"The Journal of Physical Chemistry Letters\",\"volume\":\"16 36\",\"pages\":\"9553–9560\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5c01974\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry Letters\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01974\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.5c01974","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

铜(Cu)上的电化学CO2还原(ECO2R)仍然是将CO2转化为增值产品最有前途的途径之一。然而,它遭受严重的重组,导致ECO2R活性催化剂的结构身份未知。在这里,我们发现溶解-再沉积是ECO2R中普遍的早期重构机制,发生在所有测试的Cu形态中,包括箔,纳米颗粒,氧化物衍生膜和气体扩散电极。使用相同位置的扫描电子显微镜,我们直接看到并确认这种转变始于反应开始,重塑催化剂形态和复杂的结构-活性解释。我们的研究结果表明,所有的Cu催化剂都是通过Cu氧化物的还原和电解质驱动的溶解-再沉积而产生的真正的原位形成的活性相的前体。认识到这种转变的普遍性对于准确理解机制和合理设计未来cu基ECO2R催化剂至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recognizing the Universality of Copper Reconstruction Via Dissolution–Redeposition at the Onset of CO2 Reduction

Recognizing the Universality of Copper Reconstruction Via Dissolution–Redeposition at the Onset of CO2 Reduction

The electrochemical CO2 reduction (ECO2R) on copper (Cu) remains one of the most promising pathways to convert CO2 into value-added products. However, it suffers from severe restructuring, resulting in the unknown structural identity of the ECO2R active catalyst. Here, we show that dissolution–redeposition is the universal early-stage restructuring mechanism in ECO2R, occurring across all the tested Cu morphologies, including foils, nanoparticles, oxide-derived films, and gas diffusion electrodes. Using identical location scanning electron microscopy, we directly visualize and confirm that this transformation begins at the reaction onset, reshaping catalyst morphology and complicating structure–activity interpretations. Our findings demonstrate that all the Cu catalysts act as precursors to their true, in situ-formed active phase, generated through the reduction of Cu oxides and electrolyte-driven dissolution-redeposition. Recognizing the universality of this transformation is essential for accurate mechanistic understanding and the rational design of future Cu-based ECO2R catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信