P-Count:基于持续的脑MRI白质高信号计数。

Xiaoling Hu, Annabel Sorby-Adams, Frederik Barkhof, W Taylor Kimberly, Oula Puonti, Juan Eugenio Iglesias
{"title":"P-Count:基于持续的脑MRI白质高信号计数。","authors":"Xiaoling Hu, Annabel Sorby-Adams, Frederik Barkhof, W Taylor Kimberly, Oula Puonti, Juan Eugenio Iglesias","doi":"10.1007/978-3-031-73967-5_10","DOIUrl":null,"url":null,"abstract":"<p><p>White matter hyperintensities (WMH) are a hallmark of cerebrovascular disease and multiple sclerosis. Automated WMH segmentation methods enable quantitative analysis via estimation of total lesion load, spatial distribution of lesions, and number of lesions (i.e., number of connected components after thresholding), all of which are correlated with patient outcomes. While the two former measures can generally be estimated robustly, the number of lesions is highly sensitive to noise and segmentation mistakes - even when small connected components are eroded or disregarded. In this article, we present <i>P-Count</i>, an algebraic WMH counting tool based on persistent homology that accounts for the topological features of WM lesions in a robust manner. Using computational geometry, <i>P-Count</i> takes the persistence of connected components into consideration, effectively filtering out the noisy WMH positives, resulting in a more accurate count of true lesions. We validated <i>P-Count</i> on the ISBI2015 longitudinal lesion segmentation dataset, where it produces significantly more accurate results than direct thresholding.</p>","PeriodicalId":520840,"journal":{"name":"Topology- and graph-informed imaging informatics : first International Workshop, TGI3 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings. International Workshop on Topology- and Graph-Informed ...","volume":"15239 ","pages":"100-110"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372671/pdf/","citationCount":"0","resultStr":"{\"title\":\"<i>P-Count</i>: Persistence-based Counting of White Matter Hyperintensities in Brain MRI.\",\"authors\":\"Xiaoling Hu, Annabel Sorby-Adams, Frederik Barkhof, W Taylor Kimberly, Oula Puonti, Juan Eugenio Iglesias\",\"doi\":\"10.1007/978-3-031-73967-5_10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>White matter hyperintensities (WMH) are a hallmark of cerebrovascular disease and multiple sclerosis. Automated WMH segmentation methods enable quantitative analysis via estimation of total lesion load, spatial distribution of lesions, and number of lesions (i.e., number of connected components after thresholding), all of which are correlated with patient outcomes. While the two former measures can generally be estimated robustly, the number of lesions is highly sensitive to noise and segmentation mistakes - even when small connected components are eroded or disregarded. In this article, we present <i>P-Count</i>, an algebraic WMH counting tool based on persistent homology that accounts for the topological features of WM lesions in a robust manner. Using computational geometry, <i>P-Count</i> takes the persistence of connected components into consideration, effectively filtering out the noisy WMH positives, resulting in a more accurate count of true lesions. We validated <i>P-Count</i> on the ISBI2015 longitudinal lesion segmentation dataset, where it produces significantly more accurate results than direct thresholding.</p>\",\"PeriodicalId\":520840,\"journal\":{\"name\":\"Topology- and graph-informed imaging informatics : first International Workshop, TGI3 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings. International Workshop on Topology- and Graph-Informed ...\",\"volume\":\"15239 \",\"pages\":\"100-110\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12372671/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topology- and graph-informed imaging informatics : first International Workshop, TGI3 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings. International Workshop on Topology- and Graph-Informed ...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-73967-5_10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topology- and graph-informed imaging informatics : first International Workshop, TGI3 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings. International Workshop on Topology- and Graph-Informed ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-73967-5_10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

白质高信号(WMH)是脑血管疾病和多发性硬化症的标志。自动WMH分割方法可以通过估计病灶总负荷、病灶空间分布和病灶数量(即阈值后连接分量的数量)进行定量分析,所有这些都与患者预后相关。虽然前两种方法通常可以稳健地估计,但损伤的数量对噪声和分割错误非常敏感——即使小的连接组件被侵蚀或忽略。在这篇文章中,我们提出了P-Count,一个基于持久同源性的代数WMH计数工具,以鲁棒的方式解释了WM病变的拓扑特征。使用计算几何,P-Count考虑到连接组件的持久性,有效地滤除噪声WMH阳性,从而更准确地计数真实病变。我们在ISBI2015纵向病变分割数据集上验证了P-Count,它产生的结果比直接阈值法更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
P-Count: Persistence-based Counting of White Matter Hyperintensities in Brain MRI.

White matter hyperintensities (WMH) are a hallmark of cerebrovascular disease and multiple sclerosis. Automated WMH segmentation methods enable quantitative analysis via estimation of total lesion load, spatial distribution of lesions, and number of lesions (i.e., number of connected components after thresholding), all of which are correlated with patient outcomes. While the two former measures can generally be estimated robustly, the number of lesions is highly sensitive to noise and segmentation mistakes - even when small connected components are eroded or disregarded. In this article, we present P-Count, an algebraic WMH counting tool based on persistent homology that accounts for the topological features of WM lesions in a robust manner. Using computational geometry, P-Count takes the persistence of connected components into consideration, effectively filtering out the noisy WMH positives, resulting in a more accurate count of true lesions. We validated P-Count on the ISBI2015 longitudinal lesion segmentation dataset, where it produces significantly more accurate results than direct thresholding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信