Rachel Lockridge Mueller, Lance C Li Puma, Michael W Itgen, Adam J Chicco
{"title":"体外变温脊椎动物肌肉氧化磷效率的进化多样性。","authors":"Rachel Lockridge Mueller, Lance C Li Puma, Michael W Itgen, Adam J Chicco","doi":"10.1098/rspb.2025.0374","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative metabolism meets the majority of vertebrate energy demands through the coupling of mitochondrial respiration to ATP production (OXPHOS). In endotherms, variations in OXPHOS coupling efficiency influence metabolic thermogenesis, locomotor economy and reactive oxygen species (ROS) generation. However, the extent of these variations and their functional implications in ectotherms are less clear. We measured mitochondrial oxygen consumption, ATP production and ROS production in permeabilized skeletal muscle fibres from salamanders, frogs and lizards representing ectotherm clades with low, medium and high standard metabolic rates (SMRs), respectively. Consistent with predicted associations with SMR, lizards had the highest capacities for muscle mitochondrial ATP production, while salamanders had the lowest. Unexpectedly, corresponding rates of oxygen consumption followed an opposite trend, reflecting 8.5-fold variations in OXPHOS coupling efficiency between salamanders (the lowest) and lizards (the highest). Intrinsic proton permeability of the inner mitochondrial membrane was the primary source of OXPHOS coupling variation across species, being highest in salamanders and lowest in lizards. Basal proton leak mediated by uncoupling proteins and the adenine nucleotide translocase was only seen in lizards, where it limits mitochondrial ROS production. We infer that diverse evolutionary selection pressures drive unexpectedly wide variations in muscle OXPHOS efficiency with different functional implications across ectotherm clades.</p>","PeriodicalId":520757,"journal":{"name":"Proceedings. Biological sciences","volume":"292 2053","pages":"20250374"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evolutionary diversity of muscle OXPHOS efficiency <i>in vitro</i> across ectothermic vertebrates.\",\"authors\":\"Rachel Lockridge Mueller, Lance C Li Puma, Michael W Itgen, Adam J Chicco\",\"doi\":\"10.1098/rspb.2025.0374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative metabolism meets the majority of vertebrate energy demands through the coupling of mitochondrial respiration to ATP production (OXPHOS). In endotherms, variations in OXPHOS coupling efficiency influence metabolic thermogenesis, locomotor economy and reactive oxygen species (ROS) generation. However, the extent of these variations and their functional implications in ectotherms are less clear. We measured mitochondrial oxygen consumption, ATP production and ROS production in permeabilized skeletal muscle fibres from salamanders, frogs and lizards representing ectotherm clades with low, medium and high standard metabolic rates (SMRs), respectively. Consistent with predicted associations with SMR, lizards had the highest capacities for muscle mitochondrial ATP production, while salamanders had the lowest. Unexpectedly, corresponding rates of oxygen consumption followed an opposite trend, reflecting 8.5-fold variations in OXPHOS coupling efficiency between salamanders (the lowest) and lizards (the highest). Intrinsic proton permeability of the inner mitochondrial membrane was the primary source of OXPHOS coupling variation across species, being highest in salamanders and lowest in lizards. Basal proton leak mediated by uncoupling proteins and the adenine nucleotide translocase was only seen in lizards, where it limits mitochondrial ROS production. We infer that diverse evolutionary selection pressures drive unexpectedly wide variations in muscle OXPHOS efficiency with different functional implications across ectotherm clades.</p>\",\"PeriodicalId\":520757,\"journal\":{\"name\":\"Proceedings. Biological sciences\",\"volume\":\"292 2053\",\"pages\":\"20250374\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12380484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. Biological sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2025.0374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/8/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. Biological sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2025.0374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/8/27 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Evolutionary diversity of muscle OXPHOS efficiency in vitro across ectothermic vertebrates.
Oxidative metabolism meets the majority of vertebrate energy demands through the coupling of mitochondrial respiration to ATP production (OXPHOS). In endotherms, variations in OXPHOS coupling efficiency influence metabolic thermogenesis, locomotor economy and reactive oxygen species (ROS) generation. However, the extent of these variations and their functional implications in ectotherms are less clear. We measured mitochondrial oxygen consumption, ATP production and ROS production in permeabilized skeletal muscle fibres from salamanders, frogs and lizards representing ectotherm clades with low, medium and high standard metabolic rates (SMRs), respectively. Consistent with predicted associations with SMR, lizards had the highest capacities for muscle mitochondrial ATP production, while salamanders had the lowest. Unexpectedly, corresponding rates of oxygen consumption followed an opposite trend, reflecting 8.5-fold variations in OXPHOS coupling efficiency between salamanders (the lowest) and lizards (the highest). Intrinsic proton permeability of the inner mitochondrial membrane was the primary source of OXPHOS coupling variation across species, being highest in salamanders and lowest in lizards. Basal proton leak mediated by uncoupling proteins and the adenine nucleotide translocase was only seen in lizards, where it limits mitochondrial ROS production. We infer that diverse evolutionary selection pressures drive unexpectedly wide variations in muscle OXPHOS efficiency with different functional implications across ectotherm clades.